Steveeeeeeen's picture
Steveeeeeeen HF Staff
add model
7e6946d
# Copyright (c) 2025 Tsinghua Univ. (authors: Xingchen Song)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from datetime import datetime
import s3tokenizer
import torch
from tqdm import tqdm
from flashcosyvoice.config import Config, SamplingParams
from flashcosyvoice.engine.llm_engine import LLMEngine
from flashcosyvoice.modules.flow import CausalMaskedDiffWithXvec
from flashcosyvoice.modules.hifigan import HiFTGenerator
class CosyVoice2(torch.nn.Module):
def __init__(self, config: Config = None):
super().__init__()
self.config = Config() if config is None else config
self.audio_tokenizer = s3tokenizer.load_model("speech_tokenizer_v2_25hz").cuda().eval()
self.llm = LLMEngine(**self.config.__dict__)
self.use_tqdm = torch.distributed.get_node_local_rank() == 0
self.flow = CausalMaskedDiffWithXvec()
if self.config.hf_config.fp16_flow:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - Casting flow to fp16")
self.flow.half()
self.flow.load_state_dict(torch.load(f"{self.config.model}/flow.pt", map_location="cpu", weights_only=True), strict=True)
self.flow.cuda().eval()
self.hift = HiFTGenerator()
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(f"{self.config.model}/hift.pt", map_location="cpu", weights_only=True).items()}
self.hift.load_state_dict(hift_state_dict, strict=True)
self.hift.cuda().eval()
@torch.inference_mode()
def forward(
self, prompt_mels_for_llm: torch.Tensor, prompt_mels_lens_for_llm: torch.Tensor,
prompt_text_tokens_for_llm: list[list[int]], text_tokens_for_llm: list[list[int]],
prompt_mels_for_flow: torch.Tensor, prompt_mels_lens_for_flow: torch.Tensor,
spk_emb_for_flow: torch.Tensor,
sampling_params: SamplingParams | list[SamplingParams],
batch_size_flow: int,
only_llm: bool,
**kwargs, # for compatibility
):
timing_stats = {}
# Audio tokenization
start_time = time.time()
prompt_speech_tokens, prompt_speech_tokens_lens = self.audio_tokenizer.quantize(
prompt_mels_for_llm.cuda(), prompt_mels_lens_for_llm.cuda()
)
timing_stats['audio_tokenization'] = time.time() - start_time
batch_size = prompt_speech_tokens.shape[0]
assert len(prompt_text_tokens_for_llm) == batch_size
# Prepare LLM inputs
start_time = time.time()
valid_prompt_speech_tokens = []
inputs = []
for i in range(batch_size):
speech_tokens_i = prompt_speech_tokens[i, :prompt_speech_tokens_lens[i].item()].tolist()
valid_prompt_speech_tokens.append(speech_tokens_i)
inputs.append([self.config.hf_config.speech_vocab_size] + prompt_text_tokens_for_llm[i] + text_tokens_for_llm[i] + [self.config.hf_config.speech_vocab_size + 1] + speech_tokens_i)
timing_stats['prepare_llm_inputs'] = time.time() - start_time
# LLM generation
start_time = time.time()
llm_outputs = self.llm.generate(inputs, sampling_params, use_tqdm=self.use_tqdm)
timing_stats['llm_generation'] = time.time() - start_time
results_dict = {
"prompt_speech_tokens": valid_prompt_speech_tokens,
"generated_speech_tokens": [o['token_ids'][:-1] for o in llm_outputs],
}
if only_llm:
return results_dict, timing_stats
# Prepare Flow inputs
start_time = time.time()
flow_inputs = []
flow_inputs_lens = []
for i, o in enumerate(llm_outputs):
generated_speech_tokens = o['token_ids'][:-1] # ignore last eos
prompt_speech_tokens = valid_prompt_speech_tokens[i]
flow_inputs.append(torch.tensor(prompt_speech_tokens + generated_speech_tokens))
flow_inputs_lens.append(len(prompt_speech_tokens) + len(generated_speech_tokens))
flow_inputs = torch.nn.utils.rnn.pad_sequence(flow_inputs, batch_first=True, padding_value=0)
flow_inputs_lens = torch.tensor(flow_inputs_lens)
timing_stats['prepare_flow_inputs'] = time.time() - start_time
# Flow generation and HiFi-GAN generation (with batching)
total_batch_size = flow_inputs.shape[0]
generated_wavs = []
flow_total_time = 0.0
hifigan_total_time = 0.0
# Process in batches according to batch_size_flow, batch_size_flow <= total_batch_size
# NOTE(xcsong): When executing both LLM and Flow on the same GPU,
# Flow can easily fill up the SM and memory. Therefore, batch processing is required to avoid OOM.
num_batches = (total_batch_size + batch_size_flow - 1) // batch_size_flow
batch_iterator = range(0, total_batch_size, batch_size_flow)
if self.use_tqdm:
batch_iterator = tqdm(batch_iterator, desc="Generating wavs (Flow+HiFi-GAN)", leave=False, unit="batch",
total=num_batches, dynamic_ncols=True, position=self.config.rank + 1)
for start_idx in batch_iterator:
end_idx = min(start_idx + batch_size_flow, total_batch_size)
batch_flow_inputs = flow_inputs[start_idx:end_idx]
batch_flow_inputs_lens = flow_inputs_lens[start_idx:end_idx]
batch_prompt_mels = prompt_mels_for_flow[start_idx:end_idx]
batch_prompt_mels_lens = prompt_mels_lens_for_flow[start_idx:end_idx]
batch_spk_emb = spk_emb_for_flow[start_idx:end_idx]
# Flow generation for this batch
flow_start_time = time.time()
with torch.amp.autocast("cuda", dtype=torch.float16 if self.config.hf_config.fp16_flow else torch.float32):
batch_generated_mels, batch_generated_mels_lens = self.flow(
batch_flow_inputs.cuda(), batch_flow_inputs_lens.cuda(),
batch_prompt_mels.cuda(), batch_prompt_mels_lens.cuda(), batch_spk_emb.cuda(),
streaming=False, finalize=True
)
flow_total_time += time.time() - flow_start_time
# HiFi-GAN generation for this batch
hifigan_start_time = time.time()
batch_size_current = end_idx - start_idx
for i in range(batch_size_current):
mel = batch_generated_mels[i, :, batch_prompt_mels_lens[i].item():batch_generated_mels_lens[i].item()].unsqueeze(0)
wav, _ = self.hift(speech_feat=mel)
generated_wavs.append(wav)
hifigan_total_time += time.time() - hifigan_start_time
timing_stats['flow_generation'] = flow_total_time
timing_stats['hifigan_generation'] = hifigan_total_time
# Calculate total time and batch statistics
timing_stats['model.forward_total'] = sum(timing_stats.values())
timing_stats['batch_size'] = len(generated_wavs)
timing_stats['batch_size_flow'] = batch_size_flow
results_dict['generated_wavs'] = generated_wavs
return results_dict, timing_stats