Steveeeeeeen's picture
Steveeeeeeen HF Staff
add model
7e6946d
# Copyright (c) 2025 Tsinghua Univ. (authors: Xingchen Song)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Example Usage: see README.md
"""
import argparse
import json
import os
import random
import sys
import time
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
import numpy as np
import onnxruntime
import s3tokenizer
import torch
import torch.distributed as dist
import torchaudio
import torchaudio.compliance.kaldi as kaldi
from torch.utils.data import DataLoader, Dataset, DistributedSampler
from tqdm import tqdm
from flashcosyvoice.config import Config, CosyVoice2LLMConfig, SamplingParams
from flashcosyvoice.cosyvoice2 import CosyVoice2
from flashcosyvoice.utils.audio import mel_spectrogram
def set_all_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def save_file_async(
wav, prompt_speech_tokens, generated_speech_tokens,
info, timing_stats
):
"""Save audio asynchronously."""
try:
os.makedirs(os.path.dirname(info['wav']), exist_ok=True)
if wav is not None:
wav = wav.cpu()
torchaudio.save(info['wav'], wav, 24000)
duration = wav.shape[-1] / 24000.0
rtf = ((timing_stats['dataloader_time'] + timing_stats['model_inference_time']) / timing_stats['batch_size']) / duration
timing_stats['rtf'] = rtf
else:
duration = 0.0
info['timing_stats'] = timing_stats
info['prompt_speech_tokens'] = prompt_speech_tokens
info['generated_speech_tokens'] = generated_speech_tokens
with open(f"{info['wav'].replace('.wav', '.json')}", "w") as f:
json.dump(info, f, ensure_ascii=False, indent=4)
return duration
except Exception as e:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [ERROR] - Error saving audio {info.get('key', 'unknown')}: {e}")
return 0.0
class AudioDataset(Dataset):
def __init__(self, text_norm, text_tokenizer, data_list, model_config: Config):
self.datas = []
self.text_norm = text_norm
self.model_config = model_config
"""Example data_list:
```
{"key": "uttid_1", "prompt_text": "你好,我是小明。", "text": "你好,我是小红。", "prompt_wav": "/mnt/data/audio/00000000.wav", "wav": "/mnt/data/audio_synthetic/uttid_1.wav"}
{"key": "uttid_2", "prompt_text": "你好,我是小红。", "text": "你好,我是小明。", "prompt_wav": "/mnt/data/audio/00000001.wav", "wav": "/mnt/data/audio_synthetic/uttid_2.wav"}
```
Note:
- `key` is the key of this sample.
- `prompt_text` is the text used for prompt.
- `text` is the text used for generating real audio.
- `prompt_wav` is the audio used for prompt.
- `wav` is the path to the generated audio to be saved (we highly recommend to pre-define the save path before running the script).
"""
missing = 0
with open(data_list, 'r', encoding='utf-8') as f:
lines = f.readlines()
total_lines = len(lines)
if torch.distributed.get_node_local_rank() == 0:
iterator = tqdm(lines, desc='Loading data')
else:
iterator = lines
for line in iterator:
data = json.loads(line.strip())
valid = True
for k in ['key', 'prompt_text', 'text', 'prompt_wav']:
if k not in data:
valid = False
break
if data[k] is None:
valid = False
break
if not os.path.exists(data['prompt_wav']):
valid = False
if valid:
self.datas.append(data)
else:
missing += 1
if torch.distributed.get_node_local_rank() == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f'[{timestamp}] - [INFO] - Loaded {total_lines} lines, found {missing} missing lines, total valid lines == {len(self.datas)}.')
self.text_tokenizer = text_tokenizer
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
self.spk_model = onnxruntime.InferenceSession(f"{self.model_config.model}/campplus.onnx", sess_options=option,
providers=["CPUExecutionProvider"])
def __len__(self):
return len(self.datas)
def __getitem__(self, idx):
data = self.datas[idx]
try:
# 1. feature for s3tokenizer
audio = s3tokenizer.load_audio(data['prompt_wav'], sr=16000) # [T]
log_mel = s3tokenizer.log_mel_spectrogram(audio) # [num_mels, T]
# 2. feature for speaker embedding
spk_feat = kaldi.fbank(audio.unsqueeze(0), num_mel_bins=80, dither=0, sample_frequency=16000)
spk_feat = spk_feat - spk_feat.mean(dim=0, keepdim=True)
spk_emb = self.spk_model.run(
None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()}
)[0].flatten().tolist()
# 3. feature for flow
audio, sample_rate = torchaudio.load(data['prompt_wav'], backend='soundfile')
audio = audio.mean(dim=0, keepdim=True) # [1, T]
if sample_rate != 24000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=24000)(audio)
mel = mel_spectrogram(audio).transpose(1, 2).squeeze(0) # [T, num_mels]
mel_len = mel.shape[0]
# 4. feature for llm
if self.text_norm is not None:
prompt_texts = [i["text"] for i in json.loads(self.text_norm.do_voicegen_frd(data['prompt_text'].strip()))["sentences"]]
prompt_text = ''.join(prompt_texts)
texts = [i["text"] for i in json.loads(self.text_norm.do_voicegen_frd(data['text'].strip()))["sentences"]]
text = ''.join(texts)
else:
prompt_text = data['prompt_text']
text = data['text']
prompt_text_ids = self.text_tokenizer.encode(prompt_text)
prompt_text_ids = [i + self.model_config.hf_config.speech_vocab_size + 2 for i in prompt_text_ids]
text_ids = self.text_tokenizer.encode(text)
text_ids = [i + self.model_config.hf_config.speech_vocab_size + 2 for i in text_ids]
item = {
"prompt_text_tokens": prompt_text_ids, "text_tokens": text_ids,
"spk_emb": spk_emb, "mel": mel, "mel_len": mel_len, "log_mel": log_mel, "info": data,
"min_tokens": len(text_ids) * self.model_config.min_token_text_ratio,
"max_tokens": len(text_ids) * self.model_config.max_token_text_ratio,
}
except Exception as e:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [WARNING] - Error processing data item {data.get('key', idx)}: {e}")
return None
return item
def collate_fn(batch):
prompt_mels_for_llm = [item["log_mel"] for item in batch if item is not None]
prompt_mels_for_llm, prompt_mels_lens_for_llm = s3tokenizer.padding(prompt_mels_for_llm) # [B, num_mels=128, T]
prompt_text_tokens_for_llm = [item["prompt_text_tokens"] for item in batch if item is not None]
text_tokens_for_llm = [item["text_tokens"] for item in batch if item is not None]
prompt_mels_for_flow = [item["mel"] for item in batch if item is not None]
prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(prompt_mels_for_flow, batch_first=True, padding_value=0) # [B, T', num_mels=80]
prompt_mels_lens_for_flow = [item["mel_len"] for item in batch if item is not None]
prompt_mels_lens_for_flow = torch.tensor(prompt_mels_lens_for_flow)
spk_emb_for_flow = [item["spk_emb"] for item in batch if item is not None]
spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
sampling_params = [SamplingParams(min_tokens=item["min_tokens"], max_tokens=item["max_tokens"], use_ras=True) for item in batch if item is not None]
infos = [item["info"] for item in batch if item is not None]
return {
"prompt_mels_for_llm": prompt_mels_for_llm,
"prompt_mels_lens_for_llm": prompt_mels_lens_for_llm,
"prompt_text_tokens_for_llm": prompt_text_tokens_for_llm,
"text_tokens_for_llm": text_tokens_for_llm,
"prompt_mels_for_flow": prompt_mels_for_flow,
"prompt_mels_lens_for_flow": prompt_mels_lens_for_flow,
"spk_emb_for_flow": spk_emb_for_flow,
"sampling_params": sampling_params,
"infos": infos,
}
def init_distributed():
world_size = int(os.environ.get('WORLD_SIZE', 1))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
rank = int(os.environ.get('RANK', 0))
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f'[{timestamp}] - [INFO] - Inference on multiple gpus, this gpu {local_rank}, rank {rank}, world_size {world_size}')
torch.cuda.set_device(local_rank)
dist.init_process_group("nccl")
return world_size, local_rank, rank
def get_args():
parser = argparse.ArgumentParser(description='FlashCosyVoice')
parser.add_argument('--model_path',
required=True,
type=str,
help='model path')
parser.add_argument('--data_list',
required=True,
type=str,
help='data list')
parser.add_argument('--batch_size_dataloader',
required=True,
type=int,
help='batch size (per-device) for dataloading')
parser.add_argument('--batch_size_flow',
required=True,
type=int,
help='batch size (per-device) for flow-matching')
parser.add_argument('--num_workers',
type=int,
default=4,
help='workers for dataloader')
parser.add_argument('--prefetch',
type=int,
default=5,
help='prefetch for dataloader')
parser.add_argument('--enable_tn',
action='store_true',
help='enable text normalization')
parser.add_argument('--only_llm',
action='store_true',
help='only generate speech tokens from llm')
parser.add_argument('--fp16_flow',
action='store_true',
help='enable fp16 flow')
parser.add_argument('--seed',
type=int,
default=1986,
help='random seed for generation')
args = parser.parse_args()
return args
def main():
args = get_args()
if args.enable_tn:
# Check python version, if == 3.10, use ttsfrd
if sys.version_info.major == 3 and sys.version_info.minor == 10:
# Check if ttsfrd is installed
try:
import ttsfrd
from cosyvoice_ttsfrd import get_resource_path
except ImportError as e:
raise ImportError("ttsfrd is not installed, please install it first, see `https://github.com/xingchensong/CosyVoice-ttsfrd` for installation guide.") from e
text_norm = ttsfrd.TtsFrontendEngine()
text_norm.initialize(get_resource_path())
text_norm.set_lang_type('pinyinvg')
else:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [WARNING] - Only python 3.10 is supported for ttsfrd, see `https://github.com/xingchensong/CosyVoice-ttsfrd` for more info. Setting enable_tn to False...")
# TODO: maybe we should use wetext if python version is not 3.10?
args.enable_tn = False
text_norm = None
else:
text_norm = None
assert (torch.cuda.is_available())
world_size, local_rank, rank = init_distributed()
config = Config(model=args.model_path, enforce_eager=True, tensor_parallel_size=1,
max_num_seqs=args.batch_size_dataloader,
hf_config=CosyVoice2LLMConfig(fp16_flow=args.fp16_flow), rank=local_rank)
model = CosyVoice2(config)
set_all_random_seed(args.seed)
dataset = AudioDataset(text_norm, model.llm.tokenizer, args.data_list, config)
sampler = DistributedSampler(dataset,
num_replicas=world_size,
rank=rank)
dataloader = DataLoader(dataset, batch_size=args.batch_size_dataloader, num_workers=args.num_workers, pin_memory=True,
sampler=sampler, shuffle=False, prefetch_factor=args.prefetch, collate_fn=collate_fn)
total_steps = len(dataset)
if local_rank == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - {args}")
progress_bar = tqdm(total=total_steps, desc="Processing samples", unit="wav",
position=0, leave=True, dynamic_ncols=True)
cpu_counts = os.cpu_count()
executor = ThreadPoolExecutor(max_workers=min(args.batch_size_dataloader, cpu_counts // 8))
pending_futures = []
dataloader_iter = iter(dataloader)
succeed_duration = 0.01 # avoid division by zero
start_time = time.time()
estimated_total_wavs = 0
succeed_wavs = 0
failed_wavs = 0
last_print_time = start_time
while True:
try:
dataloader_start = time.time()
batch = next(dataloader_iter)
dataloader_time = time.time() - dataloader_start
if len(batch['infos']) == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [WARNING] - rank {rank} of {world_size}: No valid batch found, skipping this batch...")
continue
model_start = time.time()
results_dict, timing_stats = model(**batch, batch_size_flow=args.batch_size_flow,
only_llm=args.only_llm)
model_time = time.time() - model_start
estimated_total_wavs += len(results_dict['generated_wavs'])
timing_stats['dataloader_time'] = dataloader_time
timing_stats['model_inference_time'] = model_time
if args.only_llm:
results_dict['generated_wavs'] = [None] * len(results_dict['prompt_speech_tokens'])
for i in range(len(results_dict['generated_wavs'])):
future = executor.submit(
save_file_async, results_dict['generated_wavs'][i],
results_dict['prompt_speech_tokens'][i],
results_dict['generated_speech_tokens'][i],
batch['infos'][i].copy(), timing_stats.copy()
)
pending_futures.append(future)
completed_futures = []
for future in pending_futures:
if future.done():
try:
duration = future.result()
succeed_duration += duration
succeed_wavs += 1
except Exception as e:
failed_wavs += 1
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [ERROR] - rank {rank} of {world_size}: Error in async save task: {e}")
completed_futures.append(future)
for future in completed_futures:
pending_futures.remove(future)
if local_rank == 0:
update_n = world_size * len(batch["prompt_text_tokens_for_llm"])
if progress_bar.n + update_n > progress_bar.total:
progress_bar.update(progress_bar.total - progress_bar.n)
else:
progress_bar.update(update_n)
current_time = time.time()
if current_time - last_print_time >= 120 and not args.only_llm:
elapsed_time = current_time - start_time
avg_duration = succeed_duration / succeed_wavs if succeed_wavs > 0 else 0
estimated_total_duration = avg_duration * estimated_total_wavs
current_rtf = elapsed_time / estimated_total_duration if estimated_total_duration > 0.01 else 0
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - rank {rank} of {world_size}: Estimated total wavs: {estimated_total_wavs} ({estimated_total_wavs - succeed_wavs} pending to save), Succeed wavs: {succeed_wavs}, Failed wavs: {failed_wavs}, Estimated total duration: {estimated_total_duration:.2f}s ({estimated_total_duration / 3600:.2f} h), Estimated RTF: {current_rtf:.5f}, Elapsed time: {elapsed_time:.2f}s") # noqa
last_print_time = current_time
except StopIteration:
break
except Exception as e:
failed_wavs += 1
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [ERROR] - rank {rank} of {world_size}: Error in main loop: {e}")
continue
total_time = time.time() - start_time
if local_rank == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - Waiting for {len(pending_futures)} pending save tasks to complete...")
for future in pending_futures:
try:
duration = future.result(timeout=60)
succeed_duration += duration
succeed_wavs += 1
except Exception as e:
failed_wavs += 1
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [ERROR] - rank {rank} of {world_size}: Error in final async save task: {e}")
executor.shutdown(wait=True)
if local_rank == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - All async save tasks completed.")
progress_bar.close()
if not args.only_llm:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - rank {rank} of {world_size}: Final Report - Succeed wavs: {succeed_wavs}, Failed wavs: {failed_wavs}, Total duration: {succeed_duration:.2f}s ({succeed_duration / 3600:.2f} h), RTF: {total_time / succeed_duration:.5f}") # noqa
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
main()