Steveeeeeeen's picture
Steveeeeeeen HF Staff
Update app.py
b9df098 verified
import os
import shlex
import subprocess
import tempfile
import traceback
from pathlib import Path
# --- Install / fetch runtime deps & assets ---
os.system("pip install -r requirements.txt")
# Download token2wav assets
os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/campplus.onnx -P token2wav")
os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/flow.pt -P token2wav")
os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/flow.yaml -P token2wav")
os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/hift.pt -P token2wav")
# Hugging Face token (optional)
hf_token = os.getenv("HF_TOKEN", None)
if hf_token is not None:
os.environ["HF_TOKEN"] = hf_token
import spaces
import gradio as gr
# -----------------------
# Utility helpers
# -----------------------
def save_tmp_audio(audio_bytes: bytes, cache_dir: str) -> str:
"""Save raw wav bytes to a temporary file and return path."""
os.makedirs(cache_dir, exist_ok=True)
with tempfile.NamedTemporaryFile(dir=cache_dir, delete=False, suffix=".wav") as temp_audio:
temp_audio.write(audio_bytes)
return temp_audio.name
def add_message(chatbot, history, mic, text):
"""Append user text or audio to the chat + history."""
if not mic and not text:
return chatbot, history, "Input is empty"
if text:
chatbot.append({"role": "user", "content": text})
history.append({"role": "human", "content": text})
elif mic and Path(mic).exists():
chatbot.append({"role": "user", "content": {"path": mic}})
history.append({"role": "human", "content": [{"type": "audio", "audio": mic}]})
print(f"{history=}")
return chatbot, history, None
def reset_state(system_prompt: str):
"""Reset chat to a single system message."""
return [], [{"role": "system", "content": system_prompt}]
# -----------------------
# Lazy model loading inside the GPU worker
# -----------------------
_MODEL = None
_TOK2WAV = None
def _get_models(model_path: str):
"""
Lazily load heavy, non-picklable models INSIDE the worker process
and cache them in module globals for reuse.
"""
global _MODEL, _TOK2WAV
if _MODEL is None or _TOK2WAV is None:
# Import here so the objects are constructed in the worker
from stepaudio2 import StepAudio2
from token2wav import Token2wav
_MODEL = StepAudio2(model_path)
_TOK2WAV = Token2wav("token2wav")
return _MODEL, _TOK2WAV
# -----------------------
# Inference
# -----------------------
@spaces.GPU
def predict(chatbot, history, prompt_wav_path, cache_dir, model_path="Step-Audio-2-mini"):
"""
Run generation on GPU worker. All args must be picklable (strings, lists, dicts).
Heavy models are created via _get_models() inside this process.
`prompt_wav_path` is the CURRENT reference audio to condition on (can be user upload).
"""
try:
audio_model, token2wav = _get_models(model_path)
history.append({
"role": "assistant",
"content": [{"type": "text", "text": "<tts_start>"}],
"eot": False
})
tokens, text, audio_tokens = audio_model(
history,
max_new_tokens=4096,
temperature=0.7,
repetition_penalty=1.05,
do_sample=True,
)
print(f"predict text={text!r}")
# Convert tokens -> waveform bytes using token2wav with the *selected* prompt
prompt_path = prompt_wav_path if (prompt_wav_path and Path(prompt_wav_path).exists()) else None
audio_bytes = token2wav(audio_tokens, prompt_path)
# Persist to temp .wav for the UI
audio_path = save_tmp_audio(audio_bytes, cache_dir)
# Append assistant audio message
chatbot.append({"role": "assistant", "content": {"path": audio_path}})
history[-1]["content"].append({"type": "token", "token": tokens})
history[-1]["eot"] = True
except Exception:
print(traceback.format_exc())
gr.Warning("Some error happened, please try again.")
return chatbot, history
# -----------------------
# UI
# -----------------------
def _launch_demo(args):
with gr.Blocks(delete_cache=(86400, 86400)) as demo:
gr.Markdown("""<center><font size=8>Step Audio 2 Demo</font></center>""")
with gr.Row():
system_prompt = gr.Textbox(
label="System Prompt",
value=(
"你的名字叫做小跃,是由阶跃星辰公司训练出来的语音大模型。\n"
"你情感细腻,观察能力强,擅长分析用户的内容,并作出善解人意的回复,"
"说话的过程中时刻注意用户的感受,富有同理心,提供多样的情绪价值。\n"
"今天是2025年8月29日,星期五\n"
"请用默认女声与用户交流。"
),
lines=2,
)
chatbot = gr.Chatbot(
elem_id="chatbot",
min_height=800,
type="messages",
)
# Initialize history with current system prompt value
history = gr.State([{"role": "system", "content": system_prompt.value}])
# NEW: keep track of the *current* prompt wav path (defaults to bundled voice)
current_prompt_wav = gr.State(args.prompt_wav)
mic = gr.Audio(type="filepath", label="🎤 Speak (optional)")
text = gr.Textbox(placeholder="Enter message ...", label="💬 Text")
with gr.Row():
clean_btn = gr.Button("🧹 Clear History (清除历史)")
regen_btn = gr.Button("🤔️ Regenerate (重试)")
submit_btn = gr.Button("🚀 Submit")
def on_submit(chatbot_val, history_val, mic_val, text_val, current_prompt):
chatbot2, history2, error = add_message(chatbot_val, history_val, mic_val, text_val)
if error:
gr.Warning(error)
# keep state intact
return chatbot2, history2, None, None, current_prompt
# Choose prompt: prefer latest user mic if present, else stick to remembered prompt
prompt_path = mic_val if (mic_val and Path(mic_val).exists()) else current_prompt
chatbot2, history2 = predict(
chatbot2, history2,
prompt_path,
args.cache_dir,
model_path=args.model_path,
)
# Clear inputs; remember the prompt we actually used
new_prompt_state = prompt_path
return chatbot2, history2, None, None, new_prompt_state
submit_btn.click(
fn=on_submit,
inputs=[chatbot, history, mic, text, current_prompt_wav],
outputs=[chatbot, history, mic, text, current_prompt_wav],
concurrency_limit=4,
concurrency_id="gpu_queue",
)
def on_clean(system_prompt_text, _default_prompt):
# Reset chat and also reset the remembered prompt back to default
new_chatbot, new_history = reset_state(system_prompt_text)
return new_chatbot, new_history, _default_prompt
clean_btn.click(
fn=on_clean,
inputs=[system_prompt, current_prompt_wav],
outputs=[chatbot, history, current_prompt_wav],
)
def on_regenerate(chatbot_val, history_val, current_prompt):
# Drop last assistant turn(s) to regenerate
while chatbot_val and chatbot_val[-1]["role"] == "assistant":
chatbot_val.pop()
while history_val and history_val[-1]["role"] == "assistant":
print(f"discard {history_val[-1]}")
history_val.pop()
return predict(
chatbot_val, history_val,
current_prompt, # use the remembered prompt for regen
args.cache_dir,
model_path=args.model_path,
)
regen_btn.click(
fn=on_regenerate,
inputs=[chatbot, history, current_prompt_wav],
outputs=[chatbot, history],
concurrency_id="gpu_queue",
)
demo.queue().launch(
server_port=args.server_port,
server_name=args.server_name,
)
# -----------------------
# Entrypoint
# -----------------------
if __name__ == "__main__":
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--model-path", type=str, default="Step-Audio-2-mini", help="Model path.")
parser.add_argument("--server-port", type=int, default=7860, help="Demo server port.")
parser.add_argument("--server-name", type=str, default="0.0.0.0", help="Demo server name.")
parser.add_argument("--prompt-wav", type=str, default="assets/default_female.wav", help="Prompt wave for the assistant.")
parser.add_argument("--cache-dir", type=str, default="/tmp/stepaudio2", help="Cache directory.")
args = parser.parse_args()
os.environ["GRADIO_TEMP_DIR"] = args.cache_dir
Path(args.cache_dir).mkdir(parents=True, exist_ok=True)
_launch_demo(args)