File size: 7,858 Bytes
e4cc20f
 
 
676ffac
 
 
e4cc20f
a9a5df1
e4cc20f
a9a5df1
 
e8f2ced
 
 
 
b58e48b
a9a5df1
6df37bd
a9a5df1
 
6df37bd
7f2c936
4d768c3
 
a9a5df1
 
676ffac
 
 
a9a5df1
 
3cf0e6f
 
a9a5df1
3cf0e6f
 
 
 
 
 
 
 
676ffac
3cf0e6f
a9a5df1
3cf0e6f
 
a9a5df1
 
 
3cf0e6f
 
676ffac
a9a5df1
 
 
 
676ffac
a9a5df1
 
676ffac
a9a5df1
 
 
 
 
 
 
 
676ffac
3cf0e6f
a9a5df1
676ffac
a9a5df1
 
676ffac
3cf0e6f
a9a5df1
676ffac
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a5df1
676ffac
a9a5df1
676ffac
 
a9a5df1
676ffac
 
a9a5df1
 
3cf0e6f
 
676ffac
3cf0e6f
 
a9a5df1
 
3cf0e6f
 
676ffac
3cf0e6f
676ffac
 
3cf0e6f
 
 
676ffac
 
a9a5df1
 
676ffac
 
 
a9a5df1
3cf0e6f
676ffac
a9a5df1
 
 
 
 
676ffac
a9a5df1
 
3cf0e6f
a9a5df1
 
676ffac
3cf0e6f
 
 
 
 
a9a5df1
 
3cf0e6f
676ffac
a9a5df1
 
 
 
 
 
 
 
3cf0e6f
 
 
a9a5df1
3cf0e6f
 
 
 
 
a9a5df1
 
 
3cf0e6f
a9a5df1
3cf0e6f
 
 
 
a9a5df1
 
 
 
 
 
 
 
 
 
 
 
3cf0e6f
 
a9a5df1
 
676ffac
3cf0e6f
 
 
a9a5df1
 
 
 
3cf0e6f
 
 
 
 
676ffac
 
 
 
 
3cf0e6f
676ffac
3cf0e6f
676ffac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import shlex
import subprocess
import tempfile
import traceback
from pathlib import Path

# --- Install / fetch runtime deps & assets ---
os.system("pip install -r requirements.txt")

# Download token2wav assets
os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/campplus.onnx -P token2wav")
os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/flow.pt -P token2wav")
os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/flow.yaml -P token2wav")
os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/resolve/main/token2wav/hift.pt -P token2wav")

# Hugging Face token (optional)
hf_token = os.getenv("HF_TOKEN", None)
if hf_token is not None:
    os.environ["HF_TOKEN"] = hf_token

import spaces
import gradio as gr

def save_tmp_audio(audio_bytes: bytes, cache_dir: str) -> str:
    """Save raw wav bytes to a temporary file and return path."""
    os.makedirs(cache_dir, exist_ok=True)
    with tempfile.NamedTemporaryFile(dir=cache_dir, delete=False, suffix=".wav") as temp_audio:
        temp_audio.write(audio_bytes)
        return temp_audio.name


def add_message(chatbot, history, mic, text):
    """Append user text or audio to the chat + history."""
    if not mic and not text:
        return chatbot, history, "Input is empty"

    if text:
        chatbot.append({"role": "user", "content": text})
        history.append({"role": "human", "content": text})
    elif mic and Path(mic).exists():
        chatbot.append({"role": "user", "content": {"path": mic}})
        history.append({"role": "human", "content": [{"type": "audio", "audio": mic}]})

    print(f"{history=}")
    return chatbot, history, None


def reset_state(system_prompt: str):
    """Reset chat to a single system message."""
    return [], [{"role": "system", "content": system_prompt}]


_MODEL = None
_TOK2WAV = None

def _get_models(model_path: str):
    """
    Lazily load heavy, non-picklable models INSIDE the worker process
    and cache them in module globals for reuse.
    """
    global _MODEL, _TOK2WAV
    if _MODEL is None or _TOK2WAV is None:
        # Import here so the objects are constructed in the worker
        from stepaudio2 import StepAudio2
        from token2wav import Token2wav
        _MODEL = StepAudio2(model_path)
        _TOK2WAV = Token2wav("token2wav")
    return _MODEL, _TOK2WAV

@spaces.GPU
def predict(chatbot, history, prompt_wav, cache_dir, model_path="Step-Audio-2-mini"):
    """
    Run generation on GPU worker. All args must be picklable (strings, lists, dicts).
    Heavy models are created via _get_models() inside this process.
    """
    try:
        audio_model, token2wav = _get_models(model_path)

        history.append({
            "role": "assistant",
            "content": [{"type": "text", "text": "<tts_start>"}],
            "eot": False
        })

        tokens, text, audio_tokens = audio_model(
            history,
            max_new_tokens=4096,
            temperature=0.7,
            repetition_penalty=1.05,
            do_sample=True
        )
        print(f"predict text={text!r}")

        # Convert tokens -> waveform bytes using token2wav
        audio_bytes = token2wav(audio_tokens, prompt_wav)

        # Persist to temp .wav for the UI
        audio_path = save_tmp_audio(audio_bytes, cache_dir)

        # Append assistant audio message
        chatbot.append({"role": "assistant", "content": {"path": audio_path}})
        history[-1]["content"].append({"type": "token", "token": tokens})
        history[-1]["eot"] = True

    except Exception:
        print(traceback.format_exc())
        gr.Warning("Some error happend, please try again.")

    return chatbot, history

def _launch_demo(args):
    with gr.Blocks(delete_cache=(86400, 86400)) as demo:
        gr.Markdown("""<center><font size=8>Step Audio 2 Demo</font></center>""")

        with gr.Row():
            system_prompt = gr.Textbox(
                label="System Prompt",
                value=(
                    "你的名字叫做小跃,是由阶跃星辰公司训练出来的语音大模型。\n"
                    "你情感细腻,观察能力强,擅长分析用户的内容,并作出善解人意的回复,"
                    "说话的过程中时刻注意用户的感受,富有同理心,提供多样的情绪价值。\n"
                    "今天是2025年8月29日,星期五\n"
                    "请用默认女声与用户交流。"
                ),
                lines=2,
            )

        chatbot = gr.Chatbot(
            elem_id="chatbot",
            min_height=800,
            type="messages",
        )

        # Initialize history with current system prompt value
        history = gr.State([{"role": "system", "content": system_prompt.value}])

        mic = gr.Audio(type="filepath", label="🎤 Speak (optional)")
        text = gr.Textbox(placeholder="Enter message ...", label="💬 Text")

        with gr.Row():
            clean_btn = gr.Button("🧹 Clear History (清除历史)")
            regen_btn = gr.Button("🤔️ Regenerate (重试)")
            submit_btn = gr.Button("🚀 Submit")

        def on_submit(chatbot_val, history_val, mic_val, text_val):
            chatbot2, history2, error = add_message(chatbot_val, history_val, mic_val, text_val)
            if error:
                gr.Warning(error)
                return chatbot2, history2, None, None
            # Run GPU inference with only picklable args
            chatbot2, history2 = predict(
                chatbot2, history2,
                args.prompt_wav, args.cache_dir,
                model_path=args.model_path
            )
            return chatbot2, history2, None, None

        submit_btn.click(
            fn=on_submit,
            inputs=[chatbot, history, mic, text],
            outputs=[chatbot, history, mic, text],
            concurrency_limit=4,
            concurrency_id="gpu_queue",
        )

        def on_clean(system_prompt_text):
            return reset_state(system_prompt_text)

        clean_btn.click(
            fn=on_clean,
            inputs=[system_prompt],
            outputs=[chatbot, history],
        )

        def on_regenerate(chatbot_val, history_val):
            # Drop last assistant turn(s) to regenerate
            while chatbot_val and chatbot_val[-1]["role"] == "assistant":
                chatbot_val.pop()
            while history_val and history_val[-1]["role"] == "assistant":
                print(f"discard {history_val[-1]}")
                history_val.pop()
            return predict(
                chatbot_val, history_val,
                args.prompt_wav, args.cache_dir,
                model_path=args.model_path
            )

        regen_btn.click(
            fn=on_regenerate,
            inputs=[chatbot, history],
            outputs=[chatbot, history],
            concurrency_id="gpu_queue",
        )

        demo.queue().launch(
            server_port=args.server_port,
            server_name=args.server_name,
        )

if __name__ == "__main__":
    from argparse import ArgumentParser

    parser = ArgumentParser()
    parser.add_argument("--model-path", type=str, default="Step-Audio-2-mini", help="Model path.")
    parser.add_argument("--server-port", type=int, default=7860, help="Demo server port.")
    parser.add_argument("--server-name", type=str, default="0.0.0.0", help="Demo server name.")
    parser.add_argument("--prompt-wav", type=str, default="assets/default_female.wav", help="Prompt wave for the assistant.")
    parser.add_argument("--cache-dir", type=str, default="/tmp/stepaudio2", help="Cache directory.")
    args = parser.parse_args()

    os.environ["GRADIO_TEMP_DIR"] = args.cache_dir
    _launch_demo(args)