import whisper
from pytube import YouTube
from transformers import pipeline
import gradio as gr
import os
import re
model = whisper.load_model("base")
summarizer = pipeline("summarization")
def get_audio(url):
yt = YouTube(url)
if yt.length < 540:
video = yt.streams.filter(only_audio=True).first()
out_file=video.download(output_path=".")
base, ext = os.path.splitext(out_file)
new_file = base+'.mp3'
os.rename(out_file, new_file)
a = new_file
return a
else:
raise gr.Error("Videos for transcription on this space are limited to 1.5 hours.")
return ""
def get_text(url):
if url != '' : output_text_transcribe = ''
result = model.transcribe(get_audio(url))
return result['text'].strip()
def get_summary(article):
first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5])
b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False)
b = b[0]['summary_text'].replace(' .', '.').strip()
return b
with gr.Blocks() as demo:
gr.Markdown("
Free Fast YouTube URL Video-to-Text using OpenAI's Whisper Model
")
gr.Markdown("Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.")
gr.Markdown("'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'")
gr.Markdown("Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience
If you have time while waiting, check out my AI blog (opens in new tab).")
input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL')
result_button_transcribe = gr.Button('1. Transcribe')
output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript')
result_button_summary = gr.Button('2. Create Summary')
output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary')
result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe)
result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary)
demo.queue(default_enabled=False).launch(debug = True)