import whisper from pytube import YouTube from transformers import pipeline import gradio as gr import os import re model = whisper.load_model("base") summarizer = pipeline("summarization") def get_audio(url): yt = YouTube(url) if yt.length < 5400: video = yt.streams.filter(only_audio=True).first() out_file=video.download(output_path=".") base, ext = os.path.splitext(out_file) new_file = base+'.mp3' os.rename(out_file, new_file) a = new_file return a else: raise gr.Error("Videos for transcription on this space are limited to 1.5 hours. Sorry about this limit but some joker thought they could stop this tool from working by transcribing many extremely long videos.") return "" def get_text(url): if url != '' : output_text_transcribe = '' result = model.transcribe(get_audio(url)) return result['text'].strip() def get_summary(article): first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5]) b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False) b = b[0]['summary_text'].replace(' .', '.').strip() return b with gr.Blocks() as demo: gr.Markdown("

Free Fast YouTube URL Video-to-Text using OpenAI's Whisper Model

") gr.Markdown("
Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.
") gr.Markdown("
'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'
") gr.Markdown("
Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience
If you have time while waiting, check out my AI blog (opens in new tab).
") input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL') result_button_transcribe = gr.Button('1. Transcribe') output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript') result_button_summary = gr.Button('2. Create Summary') output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary') result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe) result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary) demo.queue(default_enabled=False).launch(debug = True)