# Imports import gradio as gr import spaces import torch from transformers import pipeline # Pre-Initialize DEVICE = "auto" if DEVICE == "auto": DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"[SYSTEM] | Using {DEVICE} type compute device.") # Variables BATCH_SIZE = 8 repo = pipeline(task="automatic-speech-recognition", model="openai/whisper-large-v3-turbo", chunk_length_s=30, device=DEVICE) css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' @spaces.GPU(15) def transcribe(inputs, task): if inputs is None: raise gr.Error("Invalid input.") output = repo(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return output def cloud(): print("[CLOUD] | Space maintained.") # Initialize with gr.Blocks(css=css) as main: with gr.Column(): gr.Markdown("🪄 Transcribe audio to text.") with gr.Column(): input = gr.Audio(sources="upload", type="filepath", label="Input"), type = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), submit = gr.Button("▶") maintain = gr.Button("☁️") with gr.Column(): output = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Output") submit.click(transcribe, inputs=[input, type], outputs=[output], queue=False) maintain.click(cloud, inputs=[], outputs=[], queue=False) main.launch(show_api=True)