Spaces:
Paused
Paused
| # Imports | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from PIL import Image | |
| from decord import VideoReader, cpu | |
| from transformers import AutoModel, AutoTokenizer | |
| # Pre-Initialize | |
| DEVICE = "auto" | |
| if DEVICE == "auto": | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"[SYSTEM] | Using {DEVICE} type compute device.") | |
| # Variables | |
| DEFAULT_INPUT = "Describe in one paragraph." | |
| MAX_FRAMES = 64 | |
| repo_name = "openbmb/MiniCPM-o-2_6" # "openbmb/MiniCPM-V-2_6-int4" # "openbmb/MiniCPM-V-2_6" | |
| repo = AutoModel.from_pretrained(repo_name, trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True) | |
| css = ''' | |
| .gradio-container{max-width: 560px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| # Functions | |
| def encode_video(video_path): | |
| def uniform_sample(l, n): | |
| gap = len(l) / n | |
| idxs = [int(i * gap + gap / 2) for i in range(n)] | |
| return [l[i] for i in idxs] | |
| vr = VideoReader(video_path, ctx=cpu(0)) | |
| sample_fps = round(vr.get_avg_fps() / 1) | |
| frame_idx = [i for i in range(0, len(vr), sample_fps)] | |
| if len(frame_idx) > MAX_FRAMES: | |
| frame_idx = uniform_sample(frame_idx, MAX_FRAMES) | |
| frames = vr.get_batch(frame_idx).asnumpy() | |
| frames = [Image.fromarray(v.astype('uint8')) for v in frames] | |
| return frames | |
| def generate(image, video, audio, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512): | |
| # repo.to(DEVICE) | |
| print(image) | |
| print(video) | |
| print(audio) | |
| print(instruction) | |
| if image is not None: | |
| image_data = Image.fromarray(image.astype('uint8'), 'RGB') | |
| inputs = [{"role": "user", "content": [image_data, instruction]}] | |
| elif video is not None: | |
| video_data = encode_video(video) | |
| inputs = [{"role": "user", "content": [video_data, instruction]}] | |
| elif audio is not None: | |
| if isinstance(audio, str): | |
| audio_data, _ = librosa.load(audio, sr=16000, mono=True) | |
| else: | |
| audio_data = audio | |
| inputs = [{"role": "user", "content": [audio_data, instruction]}] | |
| else: | |
| return "No input provided." | |
| parameters = { | |
| "sampling": sampling, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| "max_new_tokens": max_tokens, | |
| } | |
| output = repo.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters) | |
| print(output) | |
| return output | |
| def cloud(): | |
| print("[CLOUD] | Space maintained.") | |
| # Initialize | |
| with gr.Blocks(css=css) as main: | |
| with gr.Column(): | |
| gr.Markdown("🪄 Analyze images and caption them using state-of-the-art openbmb/MiniCPM-V-2_6.") | |
| with gr.Column(): | |
| input = gr.Image(label="Image") | |
| input_2 = gr.Video(label="Video") | |
| input_3 = gr.Audio(label="Audio") | |
| instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction") | |
| sampling = gr.Checkbox(value=False, label="Sampling") | |
| temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature") | |
| top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P") | |
| top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K") | |
| repetition_penalty = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=1.05, label="Repetition Penalty") | |
| max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens") | |
| submit = gr.Button("▶") | |
| maintain = gr.Button("☁️") | |
| with gr.Column(): | |
| output = gr.Textbox(lines=1, value="", label="Output") | |
| submit.click(fn=generate, inputs=[input, input_2, input_3, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False) | |
| maintain.click(cloud, inputs=[], outputs=[], queue=False) | |
| main.launch(show_api=True) |