Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,11 @@ os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
8 |
# Initialize paths and model identifiers for easy configuration and maintenance
|
9 |
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
|
10 |
retrieval_model_name = 'output/sentence-transformer-finetuned/'
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
14 |
|
@@ -24,6 +28,9 @@ except Exception as e:
|
|
24 |
print(f"Failed to load models: {e}")
|
25 |
|
26 |
def load_and_preprocess_text(filename):
|
|
|
|
|
|
|
27 |
try:
|
28 |
with open(filename, 'r', encoding='utf-8') as file:
|
29 |
segments = [line.strip() for line in file if line.strip()]
|
@@ -36,50 +43,83 @@ def load_and_preprocess_text(filename):
|
|
36 |
segments = load_and_preprocess_text(filename)
|
37 |
|
38 |
def find_relevant_segment(user_query, segments):
|
|
|
|
|
|
|
|
|
39 |
try:
|
|
|
40 |
lower_query = user_query.lower()
|
|
|
|
|
41 |
query_embedding = retrieval_model.encode(lower_query)
|
42 |
segment_embeddings = retrieval_model.encode(segments)
|
|
|
|
|
43 |
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
|
|
|
|
|
44 |
best_idx = similarities.argmax()
|
|
|
|
|
45 |
return segments[best_idx]
|
46 |
except Exception as e:
|
47 |
print(f"Error in finding relevant segment: {e}")
|
48 |
return ""
|
49 |
|
50 |
def generate_response(user_query, relevant_segment):
|
|
|
|
|
|
|
51 |
try:
|
52 |
user_message = f"Here's the information on outer space: {relevant_segment}"
|
|
|
|
|
53 |
messages.append({"role": "user", "content": user_message})
|
54 |
|
55 |
response = openai.ChatCompletion.create(
|
56 |
-
model="gpt-
|
57 |
messages=messages,
|
58 |
-
max_tokens=
|
59 |
temperature=0.2,
|
60 |
top_p=1,
|
61 |
frequency_penalty=0,
|
62 |
presence_penalty=0
|
63 |
)
|
64 |
|
|
|
65 |
output_text = response['choices'][0]['message']['content'].strip()
|
|
|
|
|
66 |
messages.append({"role": "assistant", "content": output_text})
|
|
|
67 |
return output_text
|
|
|
68 |
except Exception as e:
|
69 |
print(f"Error in generating response: {e}")
|
70 |
return f"Error in generating response: {e}"
|
71 |
|
72 |
def query_model(question):
|
|
|
|
|
|
|
73 |
if question == "":
|
74 |
-
return "Welcome to Starfinder! Ask me anything about outer space, stargazing, and upcoming astronomical events."
|
|
|
75 |
if "san francisco" in question.lower():
|
76 |
-
return
|
|
|
|
|
|
|
|
|
|
|
77 |
relevant_segment = find_relevant_segment(question, segments)
|
78 |
if not relevant_segment:
|
79 |
-
return "Could not find specific information. Please refine your question."
|
80 |
response = generate_response(question, relevant_segment)
|
81 |
-
return response
|
82 |
|
|
|
83 |
welcome_message = """
|
84 |
# ♟️ Welcome to Starfinder!
|
85 |
## Your AI-driven assistant for all astronomy-related queries. Created by Aarna, Aditi, and Anastasia of the 2024 Kode With Klossy SF Camp.
|
@@ -95,21 +135,39 @@ topics = """
|
|
95 |
- Astronomy tips
|
96 |
"""
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
with gr.Row():
|
101 |
with gr.Column():
|
102 |
-
gr.Markdown(topics)
|
103 |
with gr.Row():
|
104 |
with gr.Column():
|
105 |
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
|
106 |
answer = gr.Textbox(label="StarFinder Response", placeholder="StarFinder will respond here...", interactive=False, lines=10)
|
|
|
107 |
submit_button = gr.Button("Submit")
|
108 |
-
submit_button.click(fn=query_model, inputs=question, outputs=answer)
|
109 |
-
gr.Image(path_to_image).style(display=False) # This will be toggled to display when needed
|
110 |
|
|
|
111 |
demo.launch(share=True)
|
112 |
|
113 |
|
114 |
|
115 |
|
|
|
|
|
|
|
|
8 |
# Initialize paths and model identifiers for easy configuration and maintenance
|
9 |
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
|
10 |
retrieval_model_name = 'output/sentence-transformer-finetuned/'
|
11 |
+
|
12 |
+
# Define paths to images
|
13 |
+
path_to_sf_image = "output/sf.png"
|
14 |
+
path_to_sacramento_image = "output/sacramento.png"
|
15 |
+
path_to_la_image = "output/la.png"
|
16 |
|
17 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
18 |
|
|
|
28 |
print(f"Failed to load models: {e}")
|
29 |
|
30 |
def load_and_preprocess_text(filename):
|
31 |
+
"""
|
32 |
+
Load and preprocess text from a file, removing empty lines and stripping whitespace.
|
33 |
+
"""
|
34 |
try:
|
35 |
with open(filename, 'r', encoding='utf-8') as file:
|
36 |
segments = [line.strip() for line in file if line.strip()]
|
|
|
43 |
segments = load_and_preprocess_text(filename)
|
44 |
|
45 |
def find_relevant_segment(user_query, segments):
|
46 |
+
"""
|
47 |
+
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
|
48 |
+
This version finds the best match based on the content of the query.
|
49 |
+
"""
|
50 |
try:
|
51 |
+
# Lowercase the query for better matching
|
52 |
lower_query = user_query.lower()
|
53 |
+
|
54 |
+
# Encode the query and the segments
|
55 |
query_embedding = retrieval_model.encode(lower_query)
|
56 |
segment_embeddings = retrieval_model.encode(segments)
|
57 |
+
|
58 |
+
# Compute cosine similarities between the query and the segments
|
59 |
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
|
60 |
+
|
61 |
+
# Find the index of the most similar segment
|
62 |
best_idx = similarities.argmax()
|
63 |
+
|
64 |
+
# Return the most relevant segment
|
65 |
return segments[best_idx]
|
66 |
except Exception as e:
|
67 |
print(f"Error in finding relevant segment: {e}")
|
68 |
return ""
|
69 |
|
70 |
def generate_response(user_query, relevant_segment):
|
71 |
+
"""
|
72 |
+
Generate a response emphasizing the bot's capability in providing astronomical information.
|
73 |
+
"""
|
74 |
try:
|
75 |
user_message = f"Here's the information on outer space: {relevant_segment}"
|
76 |
+
|
77 |
+
# Append user's message to messages list
|
78 |
messages.append({"role": "user", "content": user_message})
|
79 |
|
80 |
response = openai.ChatCompletion.create(
|
81 |
+
model="gpt-3.5-turbo",
|
82 |
messages=messages,
|
83 |
+
max_tokens=150,
|
84 |
temperature=0.2,
|
85 |
top_p=1,
|
86 |
frequency_penalty=0,
|
87 |
presence_penalty=0
|
88 |
)
|
89 |
|
90 |
+
# Extract the response text
|
91 |
output_text = response['choices'][0]['message']['content'].strip()
|
92 |
+
|
93 |
+
# Append assistant's message to messages list for context
|
94 |
messages.append({"role": "assistant", "content": output_text})
|
95 |
+
|
96 |
return output_text
|
97 |
+
|
98 |
except Exception as e:
|
99 |
print(f"Error in generating response: {e}")
|
100 |
return f"Error in generating response: {e}"
|
101 |
|
102 |
def query_model(question):
|
103 |
+
"""
|
104 |
+
Process a question, find relevant information, and generate a response.
|
105 |
+
"""
|
106 |
if question == "":
|
107 |
+
return "Welcome to Starfinder! Ask me anything about outer space, stargazing, and upcoming astronomical events.", None
|
108 |
+
|
109 |
if "san francisco" in question.lower():
|
110 |
+
return "Here is a picture of San Francisco!", path_to_sf_image
|
111 |
+
if "sacramento" in question.lower():
|
112 |
+
return "Here is a picture of Sacramento!", path_to_sacramento_image
|
113 |
+
if "los angeles" in question.lower() or "la" in question.lower():
|
114 |
+
return "Here is a picture of Los Angeles!", path_to_la_image
|
115 |
+
|
116 |
relevant_segment = find_relevant_segment(question, segments)
|
117 |
if not relevant_segment:
|
118 |
+
return "Could not find specific information. Please refine your question.", None
|
119 |
response = generate_response(question, relevant_segment)
|
120 |
+
return response, None
|
121 |
|
122 |
+
# Define the welcome message and specific topics the chatbot can provide information about
|
123 |
welcome_message = """
|
124 |
# ♟️ Welcome to Starfinder!
|
125 |
## Your AI-driven assistant for all astronomy-related queries. Created by Aarna, Aditi, and Anastasia of the 2024 Kode With Klossy SF Camp.
|
|
|
135 |
- Astronomy tips
|
136 |
"""
|
137 |
|
138 |
+
STARS = gr.themes.Base().set(
|
139 |
+
background_fill_primary='#2A628F', # Light yellow background
|
140 |
+
background_fill_primary_dark='#FFD700', # Darker yellow background
|
141 |
+
background_fill_secondary='#3E92CC', # Light blue background
|
142 |
+
background_fill_secondary_dark='#2A628F', # Darker blue background
|
143 |
+
border_color_accent='#16324F', # Accent border color (dark blue)
|
144 |
+
border_color_accent_dark='#16324F', # Dark accent border color (dark blue)
|
145 |
+
border_color_accent_subdued='#18435A', # Subdued accent border color (slightly lighter blue)
|
146 |
+
border_color_primary='#2A628F', # Primary border color (medium blue)
|
147 |
+
block_border_color='#2A628F', # Block border color (medium blue)
|
148 |
+
button_primary_background_fill='#2A628F', # Primary button background color (medium blue)
|
149 |
+
)
|
150 |
+
|
151 |
+
# Setup the Gradio Blocks interface with custom layout components
|
152 |
+
with gr.Blocks(theme=STARS) as demo:
|
153 |
+
gr.Markdown(welcome_message) # Display the formatted welcome message
|
154 |
with gr.Row():
|
155 |
with gr.Column():
|
156 |
+
gr.Markdown(topics) # Show the topics on the left side
|
157 |
with gr.Row():
|
158 |
with gr.Column():
|
159 |
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
|
160 |
answer = gr.Textbox(label="StarFinder Response", placeholder="StarFinder will respond here...", interactive=False, lines=10)
|
161 |
+
image_output = gr.Image(label="Image Output") # Add an Image component
|
162 |
submit_button = gr.Button("Submit")
|
163 |
+
submit_button.click(fn=query_model, inputs=question, outputs=[answer, image_output]) # Update outputs to include the image component
|
|
|
164 |
|
165 |
+
# Launch the Gradio app to allow user interaction
|
166 |
demo.launch(share=True)
|
167 |
|
168 |
|
169 |
|
170 |
|
171 |
+
|
172 |
+
|
173 |
+
|