Spaces:
Sleeping
Sleeping
import gradio as gr | |
from sentence_transformers import SentenceTransformer, util | |
import openai | |
import os | |
#trying so when user puts la or los angles specific pic comes: | |
# URL or path to your image file | |
#PICTURE_URL = "Stars/sf.png" | |
#def respond(user_input): | |
# if "los angeles" in user_input.lower() or "la" in user_input.lower(): | |
#return f"Here's a picture of Los Angeles!", PICTURE_URL | |
# else: | |
# return "How can I help you with astronomy?", None | |
# Define the Gradio interface | |
#iface = gr.Interface( | |
# fn=respond, | |
# inputs="text", | |
# outputs=["text", "image"] | |
#) | |
# Launch the interface | |
#iface.launch() | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Initialize paths and model identifiers for easy configuration and maintenance | |
filename = "output_topic_details.txt" # Path to the file storing chess-specific details | |
retrieval_model_name = 'output/sentence-transformer-finetuned/' | |
# Define paths to images | |
path_to_sf_image = "Stars/sf.png" | |
path_to_sacramento_image = "Stars/sacramento.png" | |
path_to_la_image = "Stars/la.png" | |
openai.api_key = os.environ["OPENAI_API_KEY"] | |
system_message = "You are an astronomy chatbot named Starfinder specialized in providing information on stargazing, astronomical events, and outer space." | |
# Initial system message to set the behavior of the assistant | |
messages = [{"role": "system", "content": system_message}] | |
# Attempt to load the necessary models and provide feedback on success or failure | |
try: | |
retrieval_model = SentenceTransformer(retrieval_model_name) | |
print("Models loaded successfully.") | |
except Exception as e: | |
print(f"Failed to load models: {e}") | |
def load_and_preprocess_text(filename): | |
""" | |
Load and preprocess text from a file, removing empty lines and stripping whitespace. | |
""" | |
try: | |
with open(filename, 'r', encoding='utf-8') as file: | |
segments = [line.strip() for line in file if line.strip()] | |
print("Text loaded and preprocessed successfully.") | |
return segments | |
except Exception as e: | |
print(f"Failed to load or preprocess text: {e}") | |
return [] | |
segments = load_and_preprocess_text(filename) | |
def find_relevant_segment(user_query, segments): | |
""" | |
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings. | |
This version finds the best match based on the content of the query. | |
""" | |
try: | |
# Lowercase the query for better matching | |
lower_query = user_query.lower() | |
# Encode the query and the segments | |
query_embedding = retrieval_model.encode(lower_query) | |
segment_embeddings = retrieval_model.encode(segments) | |
# Compute cosine similarities between the query and the segments | |
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0] | |
# Find the index of the most similar segment | |
best_idx = similarities.argmax() | |
# Return the most relevant segment | |
return segments[best_idx] | |
except Exception as e: | |
print(f"Error in finding relevant segment: {e}") | |
return "" | |
def generate_response(user_query, relevant_segment): | |
""" | |
Generate a response emphasizing the bot's capability in providing astronomical information. | |
""" | |
try: | |
user_message = f"Here's the information on outer space: {relevant_segment}" | |
# Append user's message to messages list | |
messages.append({"role": "user", "content": user_message}) | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=messages, | |
max_tokens=150, | |
temperature=0.2, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
# Extract the response text | |
output_text = response['choices'][0]['message']['content'].strip() | |
# Append assistant's message to messages list for context | |
messages.append({"role": "assistant", "content": output_text}) | |
return output_text | |
except Exception as e: | |
print(f"Error in generating response: {e}") | |
return f"Error in generating response: {e}" | |
def query_model(question): | |
""" | |
Process a question, find relevant information, and generate a response. | |
""" | |
if question == "": | |
return "Welcome to Starfinder! Ask me anything about outer space, stargazing, and upcoming astronomical events.", None | |
if "san francisco" in question.lower(): | |
return "There are many locations near San Francisco where you can stargaze: Lick Observatory (Mount Hamilton), Chabot Space & Science Center (Oakland) , Twin Peaks (SF), Sibley Volcanic National Reserve (Oakland), Mount Tamalpais (Marin), San Francisco State University Observatory (SF), Mount Diablo (East Bay)!", "https://huggingface.co/spaces/Starfinders/Stars/resolve/main/sf.png" | |
if "sacramento" in question.lower(): | |
return "There are many locations near Sacramento where you can stargaze: Kalithea Park, Northstar Park, Curtis Park, Lake Theodore, Casa Bella Verde, McKinley Park, Tiscornia Park, Old Sacramento Waterfront.", "https://huggingface.co/spaces/Starfinders/Stars/resolve/main/sacramento.png" | |
if "los angeles" in question.lower() or "la" in question.lower(): | |
return "There are many locations near Los Angeles where you can stargaze: Leo Carrillo State Beach (Malibu), Malibu Creek State Park (Malibu), Griffith Observatory (Griffith Park), Mount Wilson Observatory (Angeles Crest)", "https://huggingface.co/spaces/Starfinders/Stars/resolve/main/la.png" | |
relevant_segment = find_relevant_segment(question, segments) | |
if not relevant_segment: | |
return "Could not find specific information. Please refine your question.", None | |
response = generate_response(question, relevant_segment) | |
return response, None | |
# Define the welcome message and specific topics the chatbot can provide information about | |
welcome_message = """ | |
# ✧ Welcome to Starfinder! | |
## Your AI-driven assistant for all astronomy-related queries. Created by Aarna, Aditi, and Anastasia of the 2024 Kode With Klossy SF Camp. | |
""" | |
topics = """ | |
### Feel Free to ask me anything from the topics below! | |
- The Night sky | |
- Outer space insights | |
- Light pollution | |
- Stargazing spots | |
- Celestial events | |
- Astronomy tips | |
""" | |
# Setup the Gradio Blocks interface with custom layout components | |
with gr.Blocks(theme='earneleh/paris') as demo: | |
gr.Markdown(welcome_message) # Display the formatted welcome message | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(topics) # Show the topics on the left side | |
with gr.Row(): | |
with gr.Column(): | |
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?") | |
answer = gr.Textbox(label="StarFinder Response", placeholder="StarFinder will respond here...", interactive=False, lines=10) | |
image_output = gr.Image(label="Image Output") # Add an Image component | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=query_model, inputs=question, outputs=[answer, image_output]) # Update outputs to include the image component | |
# Launch the Gradio app to allow user interaction | |
demo.launch(share=True) | |