Spaces:
Sleeping
Sleeping
File size: 7,390 Bytes
1cc6224 8bc18b2 eef0da4 2a305d2 8bc18b2 2a305d2 5a2dff1 eef0da4 2a305d2 1142e03 eef0da4 2a305d2 1cc6224 22e0a37 2a305d2 e8f37b2 1cc6224 ed38634 f029724 9e582a7 ff9d83f 1cc6224 22e0a37 1cc6224 22e0a37 1cc6224 22e0a37 1cc6224 22e0a37 1cc6224 22e0a37 1cc6224 22e0a37 1cc6224 22e0a37 1cc6224 22e0a37 1cc6224 472359a 22e0a37 ff9d83f 1cc6224 22e0a37 1cc6224 22e0a37 1cc6224 ff9d83f 22e0a37 ff9d83f 22e0a37 ff9d83f 22e0a37 ff9d83f 22e0a37 1cc6224 22e0a37 1cc6224 22e0a37 9e582a7 9fb3dd5 22e0a37 9fb3dd5 22e0a37 9fb3dd5 22e0a37 1cc6224 22e0a37 1cc6224 22e0a37 1cc6224 2a305d2 22e0a37 1cc6224 6bf8062 472359a 1cc6224 9a8c592 1cc6224 0f42433 22e0a37 b352615 4b14b2d 1cc6224 4b14b2d 1cc6224 22e0a37 1cc6224 9e582a7 e8f37b2 22e0a37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
#trying so when user puts la or los angles specific pic comes:
# URL or path to your image file
#PICTURE_URL = "Stars/sf.png"
#def respond(user_input):
# if "los angeles" in user_input.lower() or "la" in user_input.lower():
#return f"Here's a picture of Los Angeles!", PICTURE_URL
# else:
# return "How can I help you with astronomy?", None
# Define the Gradio interface
#iface = gr.Interface(
# fn=respond,
# inputs="text",
# outputs=["text", "image"]
#)
# Launch the interface
#iface.launch()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
# Define paths to images
path_to_sf_image = "Stars/sf.png"
path_to_sacramento_image = "Stars/sacramento.png"
path_to_la_image = "Stars/la.png"
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are an astronomy chatbot named Starfinder specialized in providing information on stargazing, astronomical events, and outer space."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing astronomical information.
"""
try:
user_message = f"Here's the information on outer space: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to Starfinder! Ask me anything about outer space, stargazing, and upcoming astronomical events.", None
if "san francisco" in question.lower():
return "There are many locations near San Francisco where you can stargaze: Lick Observatory (Mount Hamilton), Chabot Space & Science Center (Oakland) , Twin Peaks (SF), Sibley Volcanic National Reserve (Oakland), Mount Tamalpais (Marin), San Francisco State University Observatory (SF), Mount Diablo (East Bay)!", "https://huggingface.co/spaces/Starfinders/Stars/resolve/main/sf.png"
if "sacramento" in question.lower():
return "There are many locations near Sacramento where you can stargaze: Kalithea Park, Northstar Park, Curtis Park, Lake Theodore, Casa Bella Verde, McKinley Park, Tiscornia Park, Old Sacramento Waterfront.", "https://huggingface.co/spaces/Starfinders/Stars/resolve/main/sacramento.png"
if "los angeles" in question.lower() or "la" in question.lower():
return "There are many locations near Los Angeles where you can stargaze: Leo Carrillo State Beach (Malibu), Malibu Creek State Park (Malibu), Griffith Observatory (Griffith Park), Mount Wilson Observatory (Angeles Crest)", "https://huggingface.co/spaces/Starfinders/Stars/resolve/main/la.png"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question.", None
response = generate_response(question, relevant_segment)
return response, None
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# ✧ Welcome to Starfinder!
## Your AI-driven assistant for all astronomy-related queries. Created by Aarna, Aditi, and Anastasia of the 2024 Kode With Klossy SF Camp.
"""
topics = """
### Feel Free to ask me anything from the topics below!
- The Night sky
- Outer space insights
- Light pollution
- Stargazing spots
- Celestial events
- Astronomy tips
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='earneleh/paris') as demo:
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="StarFinder Response", placeholder="StarFinder will respond here...", interactive=False, lines=10)
image_output = gr.Image(label="Image Output") # Add an Image component
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=[answer, image_output]) # Update outputs to include the image component
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|