Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| #import torch | |
| import yolov7 | |
| import subprocess | |
| import tempfile | |
| import time | |
| from pathlib import Path | |
| import uuid | |
| import cv2 | |
| import gradio as gr | |
| # Images | |
| #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') | |
| #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg') | |
| def image_fn( | |
| image: gr.inputs.Image = None, | |
| model_path: gr.inputs.Dropdown = None, | |
| image_size: gr.inputs.Slider = 640, | |
| conf_threshold: gr.inputs.Slider = 0.25, | |
| iou_threshold: gr.inputs.Slider = 0.45, | |
| ): | |
| """ | |
| YOLOv7 inference function | |
| Args: | |
| image: Input image | |
| model_path: Path to the model | |
| image_size: Image size | |
| conf_threshold: Confidence threshold | |
| iou_threshold: IOU threshold | |
| Returns: | |
| Rendered image | |
| """ | |
| model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False) | |
| model.conf = conf_threshold | |
| model.iou = iou_threshold | |
| results = model([image], size=image_size) | |
| return results.render()[0] | |
| def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration): | |
| model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False) | |
| start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec)) | |
| end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration)) | |
| suffix = Path(video_file).suffix | |
| clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix) | |
| subprocess.call( | |
| f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split() | |
| ) | |
| # Reader of clip file | |
| cap = cv2.VideoCapture(clip_temp_file.name) | |
| # This is an intermediary temp file where we'll write the video to | |
| # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness | |
| # with ffmpeg at the end of the function here. | |
| with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file: | |
| out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720)) | |
| num_frames = 0 | |
| max_frames = duration * 30 | |
| while cap.isOpened(): | |
| try: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| except Exception as e: | |
| print(e) | |
| continue | |
| print("FRAME DTYPE", type(frame)) | |
| out.write(model([frame], conf_thres, iou_thres)) | |
| num_frames += 1 | |
| print("Processed {} frames".format(num_frames)) | |
| if num_frames == max_frames: | |
| break | |
| out.release() | |
| # Aforementioned hackiness | |
| out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False) | |
| subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split()) | |
| return out_file.name | |
| image_interface = gr.Interface( | |
| fn=image_fn, | |
| inputs=[ | |
| gr.inputs.Image(type="pil", label="Input Image"), | |
| gr.inputs.Dropdown( | |
| choices=[ | |
| "StarAtNyte1/yolov7_custom", | |
| #"kadirnar/yolov7-v0.1", | |
| ], | |
| default="StarAtNyte1/yolov7_custom", | |
| label="Model", | |
| ) | |
| #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size") | |
| #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
| #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold") | |
| ], | |
| outputs=gr.outputs.Image(type="filepath", label="Output Image"), | |
| title="Yolov7 Pollutants Detection", | |
| cache_examples=True, | |
| theme='huggingface', | |
| ) | |
| video_interface = gr.Interface( | |
| fn=video_fn, | |
| inputs=[ | |
| gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"), | |
| gr.inputs.Dropdown( | |
| choices=[ | |
| "StarAtNyte1/yolov7_custom", | |
| #"kadirnar/yolov7-v0.1", | |
| ], | |
| default="StarAtNyte1/yolov7_custom", | |
| label="Model", | |
| ), | |
| ], | |
| outputs=gr.outputs.Video(type = "mp4", label = "Output Video"), | |
| # examples=[ | |
| # ["video.mp4", 0.25, 0.45, 0, 2], | |
| # ], | |
| title="Yolov7 Pollutants Detection", | |
| cache_examples=True, | |
| theme='huggingface', | |
| ) | |
| if __name__ == "__main__": | |
| gr.TabbedInterface( | |
| [image_interface, video_interface], | |
| ["Run on Images", "Run on Videos"], | |
| ).launch() |