import os import cv2 import gradio as gr import AnimeGANv3_src import numpy as np import logging # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') class AnimeGANv3: def __init__(self): # Ensure directories exist os.makedirs('output', exist_ok=True) os.makedirs('frames', exist_ok=True) def process_frame(self, frame, style_code, det_face): """Process a single frame with AnimeGANv3.""" frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) output = AnimeGANv3_src.Convert(frame_rgb, style_code, det_face) return output[:, :, ::-1] # Convert back to BGR for OpenCV def inference(self, video_path, style, if_face=None): logging.info(f"Starting inference: video={video_path}, style={style}, face_detection={if_face}") try: # Map style names to codes style_codes = { "AnimeGANv3_Arcane": "A", "AnimeGANv3_Trump v1.0": "T", "AnimeGANv3_Shinkai": "S", "AnimeGANv3_PortraitSketch": "P", "AnimeGANv3_Hayao": "H", "AnimeGANv3_Disney v1.0": "D", "AnimeGANv3_JP_face v1.0": "J", "AnimeGANv3_Kpop v2.0": "K", } style_code = style_codes.get(style, "U") det_face = if_face == "Yes" # Open the input video and extract frames cap = cv2.VideoCapture(video_path) if not cap.isOpened(): raise Exception("Could not open video file") fps = cap.get(cv2.CAP_PROP_FPS) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frames = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break frames.append(frame) cap.release() logging.info(f"Extracted {frame_count} frames at {fps} FPS to process") # Process each frame and save as PNG with logging for idx, frame in enumerate(frames): stylized_frame = self.process_frame(frame, style_code, det_face) png_filename = f'frames/frame_{idx:04d}.png' cv2.imwrite(png_filename, stylized_frame) logging.info(f"Processed and saved frame {idx + 1}/{frame_count} as {png_filename}") logging.info("All frames processed and saved as PNGs") # Combine PNGs into video using ffmpeg save_path = "output/out.mp4" os.system(f"ffmpeg -framerate {fps} -i frames/frame_%04d.png -c:v libx264 -pix_fmt yuv420p {save_path} -y") # Check if the video was created if not os.path.exists(save_path): raise Exception("Failed to create output video with ffmpeg") logging.info(f"Video created: {save_path}") return save_path except Exception as error: logging.error(f"Error: {str(error)}") return None # Create an instance of the AnimeGANv3 class anime_gan = AnimeGANv3() # Define the Gradio interface title = "AnimeGANv3: Video to Anime Converter" description = r"""Upload a video to convert it into anime style using AnimeGANv3.
Select a style and choose whether to optimize for faces.
AnimeGANv3 GitHub | Patreon""" iface = gr.Interface( fn=anime_gan.inference, inputs=[ gr.Video(label="Input Video"), gr.Dropdown(choices=[ 'AnimeGANv3_Hayao', 'AnimeGANv3_Shinkai', 'AnimeGANv3_Arcane', 'AnimeGANv3_Trump v1.0', 'AnimeGANv3_Disney v1.0', 'AnimeGANv3_PortraitSketch', 'AnimeGANv3_JP_face v1.0', 'AnimeGANv3_Kpop v2.0', ], label='AnimeGANv3 Style', value='AnimeGANv3_Arcane'), gr.Radio(choices=["Yes", "No"], label='Extract face', value="No"), ], outputs=[ gr.Video(label="Output Video") ], title=title, description=description, allow_flagging="never" ) # Launch the interface iface.launch()