VideoToAnime / app.py
SpiderReddy's picture
Update app.py
2ba9149 verified
raw
history blame
2.04 kB
import gradio as gr
import cv2
import numpy as np
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image
from PIL import Image # Add this import
# Load the anime-style diffusion model
pipe = AutoPipelineForImage2Image.from_pretrained(
"nitrosocke/Arcane-Diffusion",
safety_checker=None,
)
# Running on CPU by default (no .to("cuda"))
# Function to process a single frame
def process_frame(frame, prompt):
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
pil_image = Image.fromarray(frame_rgb) # Convert NumPy array to PIL image
image = load_image(pil_image) # Pass PIL image to load_image
result = pipe(prompt=prompt, image=image, strength=0.75).images[0]
return np.array(result)
# Function to convert the entire video
def video_to_anime(video_path, prompt="Arcane style"):
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
cap.release()
# Process each frame
processed_frames = [process_frame(frame, prompt) for frame in frames]
# Write the output video
height, width, _ = processed_frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_path = "output.mp4"
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for frame in processed_frames:
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame_bgr)
out.release()
return output_path
# Create the Gradio interface
iface = gr.Interface(
fn=video_to_anime,
inputs=[
gr.Video(label="Input Video"),
gr.Textbox(label="Style Prompt", value="Arcane style")
],
outputs=gr.Video(label="Output Video"),
title="Video to Anime Converter",
description="Upload a video and convert it to anime style!"
)
# Launch the interface with a public link
iface.launch(share=True) # Added share=True as per the suggestion