Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| import spaces | |
| # Load the model | |
| # The model will be downloaded and cached the first time the app runs. | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "Spestly/OdysseyXL_V2.5", | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| use_safetensors=True | |
| ) | |
| # Move the pipeline to the GPU | |
| pipe.to("cuda") | |
| def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps): | |
| """ | |
| Generates an image from a text prompt using the OdysseyXL V2.5 model. | |
| Args: | |
| prompt (str): The text prompt to generate the image from. | |
| negative_prompt (str): The negative text prompt. | |
| guidance_scale (float): The guidance scale for the generation. | |
| num_inference_steps (int): The number of inference steps. | |
| Returns: | |
| PIL.Image.Image: The generated image. | |
| """ | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps | |
| ).images[0] | |
| return image | |
| # --- Gradio Interface --- | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown("# π¨ OdysseyXL V2.5 Image Generation") | |
| gr.Markdown("A Gradio UI for the [Spestly/OdysseyXL V2.5](https://huggingface.co/Spestly/OdysseyXL%20V2.5) SDXL model, optimized for ZeroGPU.") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=2, | |
| placeholder="Enter your prompt", | |
| container=False | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| placeholder="Enter a negative prompt" | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0, | |
| maximum=20, | |
| step=0.1, | |
| value=7.5 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=10, | |
| maximum=100, | |
| step=1, | |
| value=30 | |
| ) | |
| run_button = gr.Button("Generate Image", variant="primary") | |
| with gr.Column(scale=1): | |
| image_output = gr.Image(label="Generated Image", show_label=False) | |
| gr.Examples( | |
| examples=[ | |
| ["A futuristic cityscape, vibrant neon colors, ultra-realistic, 8K", "blurry, low quality", 7.5, 30], | |
| ["A majestic lion with a crown of stars, cosmic background, fantasy art", "cartoon, sketch", 8.0, 40], | |
| ["An enchanted forest at night, glowing mushrooms, fireflies, mystical atmosphere", "daytime, bright", 7.0, 35], | |
| ["A delicious-looking gourmet burger on a wooden table, hyperrealistic food photography", "messy, unappetizing", 7.5, 25] | |
| ], | |
| inputs=[prompt, negative_prompt, guidance_scale, num_inference_steps], | |
| outputs=image_output, | |
| fn=generate_image, | |
| cache_examples=True, | |
| ) | |
| run_button.click( | |
| fn=generate_image, | |
| inputs=[prompt, negative_prompt, guidance_scale, num_inference_steps], | |
| outputs=image_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |