Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -30,7 +30,6 @@ MODELS = {
|
|
30 |
"is_vision": False,
|
31 |
"system_prompt_env": "ATLAS_PRO_0403",
|
32 |
},
|
33 |
-
|
34 |
}
|
35 |
|
36 |
# Load default model
|
@@ -53,34 +52,21 @@ tokenizer, model = load_model(default_model)
|
|
53 |
# Generate response function
|
54 |
def generate_response(message, image, history, model_key, model_size, temperature, top_p, max_new_tokens):
|
55 |
global tokenizer, model
|
56 |
-
# Load the selected model
|
57 |
selected_model = MODELS[model_key]["sizes"][model_size]
|
58 |
if selected_model != default_model:
|
59 |
tokenizer, model = load_model(selected_model)
|
60 |
|
61 |
-
# Get the system prompt from the environment
|
62 |
system_prompt_env = MODELS[model_key]["system_prompt_env"]
|
63 |
system_prompt = os.getenv(system_prompt_env, "You are an advanced AI system. Help the user as best as you can.")
|
64 |
|
65 |
-
# Construct instruction
|
66 |
if MODELS[model_key]["is_vision"]:
|
67 |
-
# If a vision model, include the image information
|
68 |
image_info = "An image has been provided as input."
|
69 |
-
instruction =
|
70 |
-
f"{system_prompt}\n\n"
|
71 |
-
f"### Instruction:\n{message}\n{image_info}\n\n### Response:"
|
72 |
-
)
|
73 |
else:
|
74 |
-
|
75 |
-
instruction = (
|
76 |
-
f"{system_prompt}\n\n"
|
77 |
-
f"### Instruction:\n{message}\n\n### Response:"
|
78 |
-
)
|
79 |
|
80 |
-
# Tokenize input
|
81 |
inputs = tokenizer(instruction, return_tensors="pt")
|
82 |
|
83 |
-
# Generate response
|
84 |
with torch.no_grad():
|
85 |
outputs = model.generate(
|
86 |
**inputs,
|
@@ -91,74 +77,61 @@ def generate_response(message, image, history, model_key, model_size, temperatur
|
|
91 |
do_sample=True
|
92 |
)
|
93 |
|
94 |
-
# Decode response
|
95 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
96 |
response = response.split("### Response:")[-1].strip()
|
97 |
return response
|
98 |
|
99 |
-
# User interface
|
100 |
def create_interface():
|
101 |
-
|
102 |
-
|
103 |
-
model_key_selector = gr.Dropdown(
|
104 |
-
label="Model",
|
105 |
-
choices=list(MODELS.keys()),
|
106 |
-
value=default_model_key
|
107 |
-
)
|
108 |
-
model_size_selector = gr.Dropdown(
|
109 |
-
label="Model Size",
|
110 |
-
choices=list(MODELS[default_model_key]["sizes"].keys()),
|
111 |
-
value=default_size
|
112 |
-
)
|
113 |
-
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1)
|
114 |
-
top_p_slider = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.9, step=0.1)
|
115 |
-
max_tokens_slider = gr.Slider(label="Max New Tokens", minimum=50, maximum=2000, value=1000, step=50)
|
116 |
-
image_input = gr.Image(label="Upload Image (if applicable)", type="filepath", visible=False)
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
image=image,
|
130 |
-
history=history,
|
131 |
-
model_key=model_key,
|
132 |
-
model_size=model_size,
|
133 |
-
temperature=temperature,
|
134 |
-
top_p=top_p,
|
135 |
-
max_new_tokens=max_new_tokens
|
136 |
)
|
137 |
-
history.append((message, response))
|
138 |
-
return history
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
description="Interact with multiple models like Atlas-Pro, Atlas-Flash, and AtlasV-Pro (Comming Soon!). Upload images for vision models!",
|
155 |
-
theme="soft",
|
156 |
-
live=True
|
157 |
-
)
|
158 |
|
159 |
-
# Add event to toggle image input visibility
|
160 |
-
iface.input_components[1].set_visibility(toggle_image_input(model_key_selector.value))
|
161 |
return iface
|
162 |
|
163 |
-
|
164 |
-
create_interface().launch()
|
|
|
30 |
"is_vision": False,
|
31 |
"system_prompt_env": "ATLAS_PRO_0403",
|
32 |
},
|
|
|
33 |
}
|
34 |
|
35 |
# Load default model
|
|
|
52 |
# Generate response function
|
53 |
def generate_response(message, image, history, model_key, model_size, temperature, top_p, max_new_tokens):
|
54 |
global tokenizer, model
|
|
|
55 |
selected_model = MODELS[model_key]["sizes"][model_size]
|
56 |
if selected_model != default_model:
|
57 |
tokenizer, model = load_model(selected_model)
|
58 |
|
|
|
59 |
system_prompt_env = MODELS[model_key]["system_prompt_env"]
|
60 |
system_prompt = os.getenv(system_prompt_env, "You are an advanced AI system. Help the user as best as you can.")
|
61 |
|
|
|
62 |
if MODELS[model_key]["is_vision"]:
|
|
|
63 |
image_info = "An image has been provided as input."
|
64 |
+
instruction = f"{system_prompt}\n\n### Instruction:\n{message}\n{image_info}\n\n### Response:"
|
|
|
|
|
|
|
65 |
else:
|
66 |
+
instruction = f"{system_prompt}\n\n### Instruction:\n{message}\n\n### Response:"
|
|
|
|
|
|
|
|
|
67 |
|
|
|
68 |
inputs = tokenizer(instruction, return_tensors="pt")
|
69 |
|
|
|
70 |
with torch.no_grad():
|
71 |
outputs = model.generate(
|
72 |
**inputs,
|
|
|
77 |
do_sample=True
|
78 |
)
|
79 |
|
|
|
80 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
response = response.split("### Response:")[-1].strip()
|
82 |
return response
|
83 |
|
|
|
84 |
def create_interface():
|
85 |
+
with gr.Blocks(title="π Atlas-Pro/Flash/Vision Interface", theme="soft") as iface:
|
86 |
+
gr.Markdown("Interact with multiple models like Atlas-Pro, Atlas-Flash, and AtlasV-Flash (Coming Soon!). Upload images for vision models!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
model_key_selector = gr.Dropdown(
|
89 |
+
label="Model",
|
90 |
+
choices=list(MODELS.keys()),
|
91 |
+
value=default_model_key
|
92 |
+
)
|
93 |
+
model_size_selector = gr.Dropdown(
|
94 |
+
label="Model Size",
|
95 |
+
choices=list(MODELS[default_model_key]["sizes"].keys()),
|
96 |
+
value=default_size
|
97 |
+
)
|
98 |
+
image_input = gr.Image(label="Upload Image (if applicable)", type="filepath", visible=False)
|
99 |
+
message_input = gr.Textbox(label="Message", placeholder="Type your message here...")
|
100 |
+
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1)
|
101 |
+
top_p_slider = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.9, step=0.1)
|
102 |
+
max_tokens_slider = gr.Slider(label="Max New Tokens", minimum=50, maximum=2000, value=1000, step=50)
|
103 |
+
chat_output = gr.Chatbot(label="Chatbot")
|
104 |
+
submit_button = gr.Button("Submit")
|
105 |
|
106 |
+
def update_components(model_key):
|
107 |
+
model_info = MODELS[model_key]
|
108 |
+
new_sizes = list(model_info["sizes"].keys())
|
109 |
+
return [
|
110 |
+
gr.Dropdown(choices=new_sizes, value=new_sizes[0]),
|
111 |
+
gr.Image(visible=model_info["is_vision"])
|
112 |
+
]
|
113 |
|
114 |
+
model_key_selector.change(
|
115 |
+
fn=update_components,
|
116 |
+
inputs=model_key_selector,
|
117 |
+
outputs=[model_size_selector, image_input]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
)
|
|
|
|
|
119 |
|
120 |
+
submit_button.click(
|
121 |
+
fn=generate_response,
|
122 |
+
inputs=[
|
123 |
+
message_input,
|
124 |
+
image_input,
|
125 |
+
chat_output,
|
126 |
+
model_key_selector,
|
127 |
+
model_size_selector,
|
128 |
+
temperature_slider,
|
129 |
+
top_p_slider,
|
130 |
+
max_tokens_slider
|
131 |
+
],
|
132 |
+
outputs=chat_output
|
133 |
+
)
|
|
|
|
|
|
|
|
|
134 |
|
|
|
|
|
135 |
return iface
|
136 |
|
137 |
+
create_interface().launch()
|
|