Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import base64
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
import google.generativeai as genai
|
7 |
+
from PIL import Image
|
8 |
+
from langchain_core.prompts import PromptTemplate
|
9 |
+
from langchain_community.document_loaders import PyPDFLoader
|
10 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
+
from langchain.chains.question_answering import load_qa_chain
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlavaNextForConditionalGeneration, LlavaNextProcessor
|
13 |
+
from pypdf import PdfReader
|
14 |
+
from doctr.io import DocumentFile
|
15 |
+
from doctr.models import ocr_predictor
|
16 |
+
import chromadb
|
17 |
+
from chromadb.utils import embedding_functions
|
18 |
+
from chromadb.utils.data_loaders import ImageLoader
|
19 |
+
|
20 |
+
# Configure Gemini API
|
21 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
22 |
+
|
23 |
+
# Load Mistral model
|
24 |
+
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
|
25 |
+
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
26 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
27 |
+
dtype = torch.bfloat16
|
28 |
+
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
|
29 |
+
|
30 |
+
# Load OCR model
|
31 |
+
ocr_model = ocr_predictor(
|
32 |
+
"db_resnet50",
|
33 |
+
"crnn_mobilenet_v3_large",
|
34 |
+
pretrained=True,
|
35 |
+
assume_straight_pages=True,
|
36 |
+
)
|
37 |
+
|
38 |
+
# Load Llava model for image description
|
39 |
+
if torch.cuda.is_available():
|
40 |
+
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
41 |
+
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
42 |
+
"llava-hf/llava-v1.6-mistral-7b-hf",
|
43 |
+
torch_dtype=torch.float16,
|
44 |
+
low_cpu_mem_usage=True,
|
45 |
+
load_in_4bit=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
def extract_images(pdf_path):
|
49 |
+
images = []
|
50 |
+
pdf_document = DocumentFile.from_pdf(pdf_path)
|
51 |
+
for page in range(len(pdf_document)):
|
52 |
+
page_images = pdf_document.get_page_images(page)
|
53 |
+
images.extend(page_images)
|
54 |
+
return images
|
55 |
+
|
56 |
+
def get_image_description(image):
|
57 |
+
torch.cuda.empty_cache()
|
58 |
+
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
59 |
+
inputs = processor(prompt, image, return_tensors="pt").to(device)
|
60 |
+
output = vision_model.generate(**inputs, max_new_tokens=100)
|
61 |
+
return processor.decode(output[0], skip_special_tokens=True)
|
62 |
+
|
63 |
+
def extract_text_with_ocr(pdf_path):
|
64 |
+
pdf_doc = DocumentFile.from_pdf(pdf_path)
|
65 |
+
result = ocr_model(pdf_doc)
|
66 |
+
return "\n".join([block.text for page in result.pages for block in page.blocks])
|
67 |
+
|
68 |
+
def get_vectordb(text, images):
|
69 |
+
client = chromadb.EphemeralClient()
|
70 |
+
loader = ImageLoader()
|
71 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
72 |
+
model_name="multi-qa-mpnet-base-dot-v1"
|
73 |
+
)
|
74 |
+
|
75 |
+
text_collection = client.get_or_create_collection(
|
76 |
+
name="text_db",
|
77 |
+
embedding_function=sentence_transformer_ef,
|
78 |
+
)
|
79 |
+
image_collection = client.get_or_create_collection(
|
80 |
+
name="image_db",
|
81 |
+
embedding_function=sentence_transformer_ef,
|
82 |
+
data_loader=loader,
|
83 |
+
)
|
84 |
+
|
85 |
+
# Add text to vector database
|
86 |
+
text_collection.add(
|
87 |
+
ids=["1"],
|
88 |
+
documents=[text],
|
89 |
+
)
|
90 |
+
|
91 |
+
# Add images to vector database
|
92 |
+
for i, image in enumerate(images):
|
93 |
+
img_description = get_image_description(image)
|
94 |
+
image_collection.add(
|
95 |
+
ids=[f"img_{i}"],
|
96 |
+
documents=[img_description],
|
97 |
+
metadatas=[{"image": image_to_bytes(image)}],
|
98 |
+
)
|
99 |
+
|
100 |
+
return client
|
101 |
+
|
102 |
+
def image_to_bytes(image):
|
103 |
+
buffered = io.BytesIO()
|
104 |
+
image.save(buffered, format="PNG")
|
105 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
106 |
+
|
107 |
+
def process_pdf(file_path):
|
108 |
+
# Extract text using OCR
|
109 |
+
text = extract_text_with_ocr(file_path)
|
110 |
+
|
111 |
+
# Extract images
|
112 |
+
images = extract_images(file_path)
|
113 |
+
|
114 |
+
# Create vector database
|
115 |
+
vectordb = get_vectordb(text, images)
|
116 |
+
|
117 |
+
return vectordb, text, images
|
118 |
+
|
119 |
+
def answer_question(vectordb, question):
|
120 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
121 |
+
prompt_template = """Answer the question as precisely as possible using the provided context. If the answer is
|
122 |
+
not contained in the context, say "answer not available in context" \n\n
|
123 |
+
Context: \n {context}?\n
|
124 |
+
Question: \n {question} \n
|
125 |
+
Answer:
|
126 |
+
"""
|
127 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
128 |
+
|
129 |
+
# Query text database
|
130 |
+
text_collection = vectordb.get_collection("text_db")
|
131 |
+
text_results = text_collection.query(query_texts=[question], n_results=1)
|
132 |
+
|
133 |
+
# Query image database
|
134 |
+
image_collection = vectordb.get_collection("image_db")
|
135 |
+
image_results = image_collection.query(query_texts=[question], n_results=1)
|
136 |
+
|
137 |
+
context = f"Text: {text_results['documents'][0][0]}\nImage: {image_results['documents'][0][0]}"
|
138 |
+
|
139 |
+
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
140 |
+
stuff_answer = stuff_chain({"input_documents": [context], "question": question}, return_only_outputs=True)
|
141 |
+
gemini_answer = stuff_answer['output_text']
|
142 |
+
|
143 |
+
# Use Mistral model for additional text generation
|
144 |
+
mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:"
|
145 |
+
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device)
|
146 |
+
with torch.no_grad():
|
147 |
+
mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50)
|
148 |
+
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True)
|
149 |
+
|
150 |
+
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}"
|
151 |
+
return combined_output
|
152 |
+
|
153 |
+
def pdf_qa(file, question):
|
154 |
+
if file is None:
|
155 |
+
return "Please upload a PDF file first."
|
156 |
+
|
157 |
+
vectordb, text, images = process_pdf(file.name)
|
158 |
+
return answer_question(vectordb, question)
|
159 |
+
|
160 |
+
# Define Gradio Interface
|
161 |
+
input_file = gr.File(label="Upload PDF File")
|
162 |
+
input_question = gr.Textbox(label="Ask about the document")
|
163 |
+
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral")
|
164 |
+
|
165 |
+
# Create Gradio Interface
|
166 |
+
gr.Interface(
|
167 |
+
fn=pdf_qa,
|
168 |
+
inputs=[input_file, input_question],
|
169 |
+
outputs=output_text,
|
170 |
+
title="Advanced PDF Analysis and QA System",
|
171 |
+
description="Upload a PDF file and ask questions about the content, including text and images."
|
172 |
+
).launch()
|