import streamlit as st from PIL import Image import numpy as np import torch from sklearn.utils.extmath import softmax import open_clip #from transformers import CLIPProcessor, CLIPModel knnpath = '20241204-ams-no-env-open_clip_ViT-H-14-378-quickgelu.npz' clip_model_name = 'ViT-H-14-378-quickgelu' pretrained_name = 'dfn5b' categories = ['walkability', 'bikeability', 'pleasantness', 'greenness', 'safety'] # Set page config st.set_page_config( page_title="Percept", layout="wide" ) debug = False #st.write("Available models:", open_clip.list_models()) @st.cache_resource def load_model(): """Load the OpenCLIP model and return model and processor""" model, _, preprocess = open_clip.create_model_and_transforms( clip_model_name, pretrained=pretrained_name ) tokenizer = open_clip.get_tokenizer(clip_model_name) return model, preprocess, tokenizer def process_image(image, preprocess): """Process image and return tensor""" if isinstance(image, str): # If image is a URL response = requests.get(image) image = Image.open(BytesIO(response.content)) # Ensure image is in RGB mode if image.mode != 'RGB': image = image.convert('RGB') processed_image = preprocess(image).unsqueeze(0) return processed_image def knn_get_score(knn, k, cat, vec): allvecs = knn[f'{cat}_vecs'] if debug: st.write('allvecs.shape', allvecs.shape) scores = knn[f'{cat}_scores'] if debug: st.write('scores.shape', scores.shape) # Compute cosine similiarity of vec against allvecs # (both are already normalized) cos_sim_table = vec @ allvecs.T if debug: st.write('cos_sim_table.shape', cos_sim_table.shape) # Get sorted array indices by similiarity in descending order sortinds = np.flip(np.argsort(cos_sim_table, axis=1), axis=1) if debug: st.write('sortinds.shape', sortinds.shape) # Get corresponding scores for the sorted vectors kscores = scores[sortinds][:,:k] if debug: st.write('kscores.shape', kscores.shape) # Get actual sorted similiarity scores # (line copied from clip_retrieval_knn.py even though sortinds.shape[0] == 1 here) ksims = cos_sim_table[np.expand_dims(np.arange(sortinds.shape[0]), axis=1), sortinds] ksims = ksims[:,:k] if debug: st.write('ksims.shape', ksims.shape) # Apply normalization after exponential formula ksims = softmax(10**ksims) # Weighted sum kweightedscore = np.sum(kscores * ksims) return kweightedscore @st.cache_resource def load_knn(): return np.load(knnpath) def main(): st.title("Percept: Human Perception of Street View Image Analyzer") try: with st.spinner('Loading CLIP model... This may take a moment.'): model, preprocess, tokenizer = load_model() device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) except Exception as e: st.error(f"Error loading model: {str(e)}") st.info("Please make sure you have enough memory and the correct dependencies installed.") with st.spinner('Loading KNN model... This may take a moment.'): knn = load_knn() if debug: st.write(knn['walkability_vecs'].shape) file = st.file_uploader('Upload An Image') if file: try: image = Image.open(file) st.image(image, caption="Uploaded Image", width=400) # Process image with st.spinner('Processing image...'): processed_image = process_image(image, preprocess) processed_image = processed_image.to(device) # Encode into CLIP vector with torch.no_grad(): vec = model.encode_image(processed_image) # Normalize vector vec /= vec.norm(dim=-1, keepdim=True) if debug: st.write(vec.shape) vec = vec.numpy() k = 40 for cat in categories: st.write(cat, f'rating = {knn_get_score(knn, k, cat, vec):.1f}') except Exception as e: st.error(f"Error processing image: {str(e)}") if __name__ == "__main__": main()