Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -9,23 +9,65 @@ import open_clip
|
|
9 |
knnpath = '20241204-ams-no-env-open_clip_ViT-H-14-378-quickgelu.npz'
|
10 |
clip_model_name = 'ViT-H-14-378-quickgelu'
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
#model, preprocess = open_clip.create_model_from_pretrained('hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K')
|
13 |
#tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K')
|
14 |
|
15 |
model, preprocess = open_clip.create_model_from_pretrained(clip_model_name)
|
16 |
tokenizer = open_clip.get_tokenizer(clip_model_name)
|
17 |
|
18 |
-
st.
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
st.write(knn['walkability_vecs'].shape)
|
25 |
|
26 |
-
file
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
if
|
29 |
-
|
30 |
-
st.write(file)
|
31 |
-
st.write(img.size)
|
|
|
9 |
knnpath = '20241204-ams-no-env-open_clip_ViT-H-14-378-quickgelu.npz'
|
10 |
clip_model_name = 'ViT-H-14-378-quickgelu'
|
11 |
|
12 |
+
|
13 |
+
# Set page config
|
14 |
+
st.set_page_config(
|
15 |
+
page_title="Percept",
|
16 |
+
layout="wide"
|
17 |
+
)
|
18 |
+
|
19 |
#model, preprocess = open_clip.create_model_from_pretrained('hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K')
|
20 |
#tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K')
|
21 |
|
22 |
model, preprocess = open_clip.create_model_from_pretrained(clip_model_name)
|
23 |
tokenizer = open_clip.get_tokenizer(clip_model_name)
|
24 |
|
25 |
+
@st.cache_resource
|
26 |
+
def load_model():
|
27 |
+
"""Load the OpenCLIP model and return model and processor"""
|
28 |
+
model, _, preprocess = open_clip.create_model_and_transforms(
|
29 |
+
'ViT-H-14',
|
30 |
+
pretrained='laion2b_s32b_b79k',
|
31 |
+
quickgelu=True
|
32 |
+
)
|
33 |
+
tokenizer = open_clip.get_tokenizer('ViT-H-14')
|
34 |
+
return model, preprocess, tokenizer
|
35 |
+
|
36 |
+
def process_image(image, preprocess):
|
37 |
+
"""Process image and return tensor"""
|
38 |
+
if isinstance(image, str):
|
39 |
+
# If image is a URL
|
40 |
+
response = requests.get(image)
|
41 |
+
image = Image.open(BytesIO(response.content))
|
42 |
+
# Ensure image is in RGB mode
|
43 |
+
if image.mode != 'RGB':
|
44 |
+
image = image.convert('RGB')
|
45 |
+
processed_image = preprocess(image).unsqueeze(0)
|
46 |
+
return processed_image
|
47 |
+
|
48 |
+
def main():
|
49 |
+
st.title("OpenCLIP Image Analyzer (ViT-H-14)")
|
50 |
+
|
51 |
+
try:
|
52 |
+
# Load model (uses st.cache_resource)
|
53 |
+
with st.spinner('Loading model... This may take a moment.'):
|
54 |
+
model, preprocess, tokenizer = load_model()
|
55 |
+
except Exception as e:
|
56 |
+
st.error(f"Error loading model: {str(e)}")
|
57 |
+
st.info("Please make sure you have enough memory and the correct dependencies installed.")
|
58 |
|
59 |
+
knn = np.load(modelpath)
|
60 |
+
st.write(knn['walkability_vecs'].shape)
|
61 |
|
62 |
+
file = st.file_uploader('Upload An Image')
|
|
|
63 |
|
64 |
+
if file:
|
65 |
+
try:
|
66 |
+
with Image.open(file) as img:
|
67 |
+
st.write(file)
|
68 |
+
st.write(img.size)
|
69 |
+
except Exception as e:
|
70 |
+
st.error(f"Error processing image: {str(e)}")
|
71 |
|
72 |
+
if __name__ == "__main__":
|
73 |
+
main()
|
|
|
|