Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -2,11 +2,26 @@ import streamlit as st
|
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
|
|
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
file = st.file_uploader('Upload An Image')
|
12 |
|
|
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
|
5 |
+
import open_clip
|
6 |
|
7 |
+
#from transformers import CLIPProcessor, CLIPModel
|
8 |
|
9 |
+
knnpath = '20241204-ams-no-env-open_clip_ViT-H-14-378-quickgelu.npz'
|
10 |
+
clip_model_name = 'ViT-H-14-378-quickgelu'
|
11 |
+
|
12 |
+
#model, preprocess = open_clip.create_model_from_pretrained('hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K')
|
13 |
+
#tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K')
|
14 |
+
|
15 |
+
model, preprocess = open_clip.create_model_from_pretrained(clip_model_name)
|
16 |
+
tokenizer = open_clip.get_tokenizer(clip_model_name)
|
17 |
+
|
18 |
+
st.write(model)
|
19 |
+
#clip_model = CLIPModel.from_pretrained()
|
20 |
+
#clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
21 |
+
|
22 |
+
|
23 |
+
knn = np.load(modelpath)
|
24 |
+
st.write(knn['walkability_vecs'].shape)
|
25 |
|
26 |
file = st.file_uploader('Upload An Image')
|
27 |
|