mdanish commited on
Commit
6ca0b8b
·
1 Parent(s): a5a5f36

ensure ksims and kscores are correct size

Browse files
Files changed (1) hide show
  1. app.py +2 -1
app.py CHANGED
@@ -57,11 +57,12 @@ def knn_get_score(knn, k, cat, vec):
57
  sortinds = np.flip(np.argsort(cos_sim_table, axis=1), axis=1)
58
  if debug: st.write('sortinds.shape', sortinds.shape)
59
  # Get corresponding scores for the sorted vectors
60
- kscores = scores[sortinds][:k]
61
  if debug: st.write('kscores.shape', kscores.shape)
62
  # Get actual sorted similiarity scores
63
  # (line copied from clip_retrieval_knn.py even though sortinds.shape[0] == 1 here)
64
  ksims = cos_sim_table[np.expand_dims(np.arange(sortinds.shape[0]), axis=1), sortinds]
 
65
  if debug: st.write('ksims.shape', ksims.shape)
66
  # Apply normalization after exponential formula
67
  ksims = softmax(10**ksims)
 
57
  sortinds = np.flip(np.argsort(cos_sim_table, axis=1), axis=1)
58
  if debug: st.write('sortinds.shape', sortinds.shape)
59
  # Get corresponding scores for the sorted vectors
60
+ kscores = scores[sortinds][:,:k]
61
  if debug: st.write('kscores.shape', kscores.shape)
62
  # Get actual sorted similiarity scores
63
  # (line copied from clip_retrieval_knn.py even though sortinds.shape[0] == 1 here)
64
  ksims = cos_sim_table[np.expand_dims(np.arange(sortinds.shape[0]), axis=1), sortinds]
65
+ ksims = ksims[:,:k]
66
  if debug: st.write('ksims.shape', ksims.shape)
67
  # Apply normalization after exponential formula
68
  ksims = softmax(10**ksims)