mdanish commited on
Commit
4cd5266
·
verified ·
1 Parent(s): e829bf1

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +10 -14
app.py CHANGED
@@ -19,11 +19,7 @@ st.set_page_config(
19
  layout="wide"
20
  )
21
 
22
- #model, preprocess = open_clip.create_model_from_pretrained('hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K')
23
- #tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K')
24
-
25
- #model, preprocess = open_clip.create_model_from_pretrained(clip_model_name)
26
- #tokenizer = open_clip.get_tokenizer(clip_model_name)
27
 
28
  #st.write("Available models:", open_clip.list_models())
29
 
@@ -50,22 +46,22 @@ def process_image(image, preprocess):
50
 
51
  def knn_get_score(knn, k, cat, vec):
52
  allvecs = knn[f'{cat}_vecs']
53
- st.write('allvecs.shape', allvecs.shape)
54
  scores = knn[f'{cat}_scores']
55
- st.write('scores.shape', scores.shape)
56
  # Compute cosine similiarity of vec against allvecs
57
  # (both are already normalized)
58
  cos_sim_table = vec @ allvecs.T
59
- st.write('cos_sim_table.shape', cos_sim_table.shape)
60
  # Get sorted array indices by similiarity in descending order
61
  sortinds = np.flip(np.argsort(cos_sim_table))
62
- st.write('sortinds.shape', sortinds.shape)
63
  # Get corresponding scores for the sorted vectors
64
  kscores = scores[sortinds][:k]
65
- st.write('kscores.shape', kscores.shape)
66
  # Get actual sorted similiarity scores
67
- ksims = cos_sim_table[sortinds][:k]
68
- st.write('ksims.shape', ksims.shape)
69
  # Apply normalization after exponential formula
70
  ksims = softmax(10**ksims)
71
  # Weighted sum
@@ -91,7 +87,7 @@ def main():
91
 
92
  with st.spinner('Loading KNN model... This may take a moment.'):
93
  knn = load_knn()
94
- st.write(knn['walkability_vecs'].shape)
95
 
96
  file = st.file_uploader('Upload An Image')
97
 
@@ -112,7 +108,7 @@ def main():
112
 
113
  # Normalize vector
114
  vec /= vec.norm(dim=-1, keepdim=True)
115
- st.write(vec.shape)
116
  vec = vec.numpy()
117
  k = 40
118
  for cat in ['walkability']:
 
19
  layout="wide"
20
  )
21
 
22
+ debug = True
 
 
 
 
23
 
24
  #st.write("Available models:", open_clip.list_models())
25
 
 
46
 
47
  def knn_get_score(knn, k, cat, vec):
48
  allvecs = knn[f'{cat}_vecs']
49
+ if debug: st.write('allvecs.shape', allvecs.shape)
50
  scores = knn[f'{cat}_scores']
51
+ if debug: st.write('scores.shape', scores.shape)
52
  # Compute cosine similiarity of vec against allvecs
53
  # (both are already normalized)
54
  cos_sim_table = vec @ allvecs.T
55
+ if debug: st.write('cos_sim_table.shape', cos_sim_table.shape)
56
  # Get sorted array indices by similiarity in descending order
57
  sortinds = np.flip(np.argsort(cos_sim_table))
58
+ if debug: st.write('sortinds.shape', sortinds.shape)
59
  # Get corresponding scores for the sorted vectors
60
  kscores = scores[sortinds][:k]
61
+ if debug: st.write('kscores.shape', kscores.shape)
62
  # Get actual sorted similiarity scores
63
+ ksims = cos_sim_table[:, sortinds][:k]
64
+ if debug: st.write('ksims.shape', ksims.shape)
65
  # Apply normalization after exponential formula
66
  ksims = softmax(10**ksims)
67
  # Weighted sum
 
87
 
88
  with st.spinner('Loading KNN model... This may take a moment.'):
89
  knn = load_knn()
90
+ if debug: st.write(knn['walkability_vecs'].shape)
91
 
92
  file = st.file_uploader('Upload An Image')
93
 
 
108
 
109
  # Normalize vector
110
  vec /= vec.norm(dim=-1, keepdim=True)
111
+ if debug: st.write(vec.shape)
112
  vec = vec.numpy()
113
  k = 40
114
  for cat in ['walkability']: