File size: 13,340 Bytes
597251d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# -*- coding: utf-8 -*-
"""model_training.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1LgqvdLV1teCsAi6qjR_BBVt4TwX7vx9J

<a href="https://colab.research.google.com/github/gauravreddy08/food-vision/blob/main/model_training.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>

# **Food Vision** πŸ”

As an introductory project to myself, I built an **end-to-end CNN Image Classification Model** which identifies the food in your image.

I worked out with a pretrained Image Classification Model that comes with Keras and then retrained it on the infamous **Food101 Dataset**.


**Fun Fact :**

The Model actually beats the DeepFood Paper's model which also trained on the same dataset.

The Accuracy of [**DeepFood**](https://arxiv.org/abs/1606.05675) was **77.4%** and our model's is **85%**. Difference of **8%** ain't much but the interesting thing is, DeepFood's model took 2-3 days to train while our's was around 60min.

> **Dataset :** `Food101`

> **Model :** `EfficientNetB1`

## **Setting up the Workspace**

* Checking the GPU
* Mounting Google Drive
* Importing Tensorflow
* Importing other required Packages

### **Checking the GPU**

For this Project we will working with **Mixed Precision**. And mixed precision works best with a with a GPU with compatibility capacity **7.0+**.

At the time of writing, colab offers the following GPU's :
* Nvidia K80
* **Nvidia T4**
* Nvidia P100

Colab allocates a random GPU everytime we factory reset runtime. So you can reset the runtime till you get a **Tesla T4 GPU** as T4 GPU has a rating 7.5.

> In case using local hardware, use a GPU with rating 7.0+ for better results.

Run the below cell to see which GPU is allocated to you.
"""

!nvidia-smi -L

"""
### **Mounting Google Drive**


"""

from google.colab import drive
drive.mount('/content/drive')

"""### **Importing Tensorflow**

At the time of writing, `tesnorflow 2.5.0` has a bug with EfficientNet Models. [Click Here](https://github.com/tensorflow/tensorflow/issues/49725) to get more info about the bug. Hopefully tensorflow fixes it soon.

So the below code is used to downgrade the version to `tensorflow 2.4.1`, it will take a moment to uninstall the previous version and install our required version.

> You need to restart the **Runtime** after required version of tensorflow is installed.

**Note :** Restarting runtime won't assign you a new GPU.
"""

#!pip install tensorflow==2.4.1
import tensorflow as tf
print(tf.__version__)

"""### **Importing other required Packages**"""

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime
import os
import tensorflow_datasets as tfds
import seaborn as sn

"""#### **Importing `helper_fuctions`**

The `helper_functions.py` is a python script created by me. Which has some important functions I use frequently while building Deep Learning Models.
"""

!wget https://raw.githubusercontent.com/sg-sparsh-goyal/extras/main/helper_function.py

from helper_function import plot_loss_curves, load_and_prep_image

"""## **Getting the Data Ready**

The Dataset used is **Food101**, which is available on both Kaggle and Tensorflow.

In the below cells we will be importing Datasets from `Tensorflow Datasets` Module.

"""

# Prints list of Datasets avaible in Tensorflow Datasets Module

dataset_list = tfds.list_builders()
dataset_list[:10]

"""### **Importing Food101 Dataset**

**Disclaimer :**
The below cell will take time to run, as it will be downloading
**4.65GB data** from **Tensorflow Datasets Module**.

So do check if you have enough **Disk Space** and **Bandwidth Cap** to run the below cell.
"""

(train_data, test_data), ds_info = tfds.load(name='food101',
                                             split=['train', 'validation'],
                                             shuffle_files=False,
                                             as_supervised=True,
                                             with_info=True)

"""## **Becoming One with the Data**

One of the most important steps in building any ML or DL Model is to **become one with the data**.

Once you get the gist of what type of data your dealing with and how it is structured, everything else will fall in place.
"""

ds_info.features

class_names = ds_info.features['label'].names
class_names[:10]

train_one_sample = train_data.take(1)

train_one_sample

for image, label in train_one_sample:
  print(f"""
  Image Shape : {image.shape}
  Image Datatype : {image.dtype}
  Class : {class_names[label.numpy()]}
  """)

image[:2]

tf.reduce_min(image), tf.reduce_max(image)

plt.imshow(image)
plt.title(class_names[label.numpy()])
plt.axis(False);

"""## **Preprocessing the Data**

Since we've downloaded the data from TensorFlow Datasets, there are a couple of preprocessing steps we have to take before it's ready to model.

More specifically, our data is currently:

* In `uint8` data type
* Comprised of all differnet sized tensors (different sized images)
* Not scaled (the pixel values are between 0 & 255)

Whereas, models like data to be:

* In `float32` data type
* Have all of the same size tensors (batches require all tensors have the same shape, e.g. `(224, 224, 3)`)
* Scaled (values between 0 & 1), also called normalized

To take care of these, we'll create a `preprocess_img()` function which:

* Resizes an input image tensor to a specified size using [`tf.image.resize()`](https://www.tensorflow.org/api_docs/python/tf/image/resize)
* Converts an input image tensor's current datatype to `tf.float32` using [`tf.cast()`](https://www.tensorflow.org/api_docs/python/tf/cast)
"""

def preprocess_img(image, label, img_size=224):
  image = tf.image.resize(image, [img_size, img_size])
  image = tf.cast(image, tf.float16)
  return image, label

# Trying the preprocess function on a single image

preprocessed_img = preprocess_img(image, label)[0]
preprocessed_img

train_data = train_data.map(preprocess_img, tf.data.AUTOTUNE)
train_data = train_data.shuffle(buffer_size=1000).batch(32).prefetch(tf.data.AUTOTUNE)

test_data = test_data.map(preprocess_img, tf.data.AUTOTUNE)
test_data = test_data.batch(32)

train_data

test_data

"""## **Building the Model : EfficientNetB1**


### **Getting the Callbacks ready**
As we are dealing with a complex Neural Network (EfficientNetB0) its a good practice to have few call backs set up. Few callbacks I will be using throughtout this Notebook are :
 * **TensorBoard Callback :** TensorBoard provides the visualization and tooling needed for machine learning experimentation

 * **EarlyStoppingCallback :** Used to stop training when a monitored metric has stopped improving.

 * **ReduceLROnPlateau :** Reduce learning rate when a metric has stopped improving.


 We already have **TensorBoardCallBack** function setup in out helper function, all we have to do is get other callbacks ready.
"""

from helper_function import create_tensorboard_callback

# EarlyStopping Callback

early_stopping_callback = tf.keras.callbacks.EarlyStopping(restore_best_weights=True, patience=3, verbose=1, monitor="val_accuracy")

# ReduceLROnPlateau Callback

lower_lr = tf.keras.callbacks.ReduceLROnPlateau(factor=0.2,
                                                monitor='val_accuracy',
                                                min_lr=1e-7,
                                                patience=0,
                                                verbose=1)

"""

### **Mixed Precision Training**
Mixed precision is used for training neural networks, reducing training time and memory requirements without affecting the model performance.

More Specifically, in **Mixed Precision** we will setting global dtype as `mixed_float16`. Because modern accelerators can run operations faster in the 16-bit dtypes, as they have specialized hardware to run 16-bit computations and 16-bit dtypes can be read from memory faster.

To know more about Mixed Precision, [**click here**](https://www.tensorflow.org/guide/mixed_precision)"""

from tensorflow.keras import mixed_precision
mixed_precision.set_global_policy(policy='mixed_float16')

mixed_precision.global_policy()

"""

### **Building the Model**"""

from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing

# Create base model
input_shape = (224, 224, 3)
base_model = tf.keras.applications.EfficientNetB1(include_top=False)

# Input and Data Augmentation
inputs = layers.Input(shape=input_shape, name="input_layer")
x = base_model(inputs)

x = layers.GlobalAveragePooling2D(name="pooling_layer")(x)
x = layers.Dropout(.3)(x)

x = layers.Dense(len(class_names))(x)
outputs = layers.Activation("softmax")(x)
model = tf.keras.Model(inputs, outputs)

# Compiling the model
model.compile(loss="sparse_categorical_crossentropy",
              optimizer=tf.keras.optimizers.Adam(0.001),
              metrics=["accuracy"])

model.summary()

history = model.fit(train_data,
                    epochs=50,
                    steps_per_epoch=len(train_data),
                    validation_data=test_data,
                    validation_steps=int(0.15 * len(test_data)),
                    callbacks=[create_tensorboard_callback("training-logs", "EfficientNetB1-"),
                               early_stopping_callback,
                               lower_lr])

# Saving the model
model.save("/content/drive/My Drive/FinalModel.hdf5")

# Saving the model
model.save("FoodVision.hdf5")

plot_loss_curves(history)

model.evaluate(test_data)

"""## **Evaluating our Model**"""

# Commented out IPython magic to ensure Python compatibility.
# %load_ext tensorboard
# %tensorboard --logdir training-logs

pred_probs = model.predict(test_data, verbose=1)
len(pred_probs), pred_probs.shape

pred_classes = pred_probs.argmax(axis=1)
pred_classes[:10], len(pred_classes), pred_classes.shape

# Getting true labels for the test_data

y_labels = []
test_images = []
for images, labels in test_data.unbatch():
  y_labels.append(labels.numpy())
y_labels[:10]

# Predicted Labels vs. True Labels
pred_classes==y_labels

"""### **Sklearn's Accuracy Score**"""

from sklearn.metrics import accuracy_score

sklearn_acc = accuracy_score(y_labels, pred_classes)
sklearn_acc

"""### **Confusion Matrix**
A confusion matrix is a table that is often used to describe the performance of a classification model (or "classifier") on a set of test data for which the true values are known
"""

cm = tf.math.confusion_matrix(y_labels, pred_classes)

plt.figure(figsize = (100, 100));
sn.heatmap(cm, annot=True,
           fmt='',
           cmap='Purples');

"""### **Model's Class-wise Accuracy Score**"""

from sklearn.metrics import classification_report
report = (classification_report(y_labels, pred_classes, output_dict=True))

# Create empty dictionary
class_f1_scores = {}
# Loop through classification report items
for k, v in report.items():
  if k == "accuracy": # stop once we get to accuracy key
    break
  else:
    # Append class names and f1-scores to new dictionary
    class_f1_scores[class_names[int(k)]] = v["f1-score"]
class_f1_scores

report_df = pd.DataFrame(class_f1_scores, index = ['f1-scores']).T

report_df = report_df.sort_values("f1-scores", ascending=True)

import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(12, 25))
scores = ax.barh(range(len(report_df)), report_df["f1-scores"].values)
ax.set_yticks(range(len(report_df)))
plt.axvline(x=0.85, linestyle='--', color='r')
ax.set_yticklabels(class_names)
ax.set_xlabel("f1-score")
ax.set_title("F1-Scores for 10 Different Classes")
ax.invert_yaxis(); # reverse the order

"""### **Predicting on our own Custom images**

Once we have our model ready, its cruicial to evaluate it on our custom data : the data our model has never seen.

Training and evaluating a model on train and test data is cool, but making predictions on our own realtime images is another level.


"""

import os

directory_path = "/content/drive/MyDrive/FoodVisionModels/Custom Images"
os.makedirs(directory_path, exist_ok=True)

custom_food_images = [directory_path + img_path for img_path in os.listdir(directory_path)]
custom_food_images

import os
import matplotlib.pyplot as plt

def pred_plot_custom(folder_path):
    custom_food_images = [folder_path + img_path for img_path in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, img_path))]

    for img in custom_food_images:
        img = load_and_prep_image(img, scale=False)
        pred_prob = model.predict(tf.expand_dims(img, axis=0))
        pred_class = class_names[pred_prob.argmax()]
        top_5_i = (pred_prob.argsort())[0][-5:][::-1]
        values = pred_prob[0][top_5_i]
        labels = []

        for x in range(5):
            labels.append(class_names[top_5_i[x]])

        fig, ax = plt.subplots(1, 2, figsize=(15, 5))

        # Plotting Image
        ax[0].imshow(img/255.)
        ax[0].set_title(f"Prediction: {pred_class}   Probability: {pred_prob.max():.2f}")
        ax[0].axis('off')

        # Plotting Models Top 5 Predictions
        ax[1].bar(labels, values, color='orange')
        ax[1].set_title('Top 5 Predictions')

        plt.show()

pred_plot_custom("/content/drive/MyDrive/FoodVisionModels/Custom Images/")