File size: 7,196 Bytes
6ab99a7
 
 
 
 
 
 
 
 
 
 
b3881ed
90e9a46
6ab99a7
 
 
 
a135217
 
6ab99a7
 
 
 
 
 
 
 
 
 
acc4b2f
 
a135217
 
 
 
 
 
 
b3881ed
a135217
 
 
 
b3881ed
 
acc4b2f
 
 
 
 
 
 
 
 
 
6ab99a7
 
 
 
 
 
 
 
 
a135217
b3881ed
 
 
 
 
 
 
 
3ca4672
 
53d2dc8
0da2d4c
 
d6a239d
0da2d4c
 
 
 
 
d6a239d
0da2d4c
 
 
 
 
d6a239d
0da2d4c
86fcb2d
 
 
 
 
 
 
d6a239d
0da2d4c
 
 
 
d6a239d
b3881ed
0da2d4c
b3881ed
0da2d4c
b3881ed
 
6ab99a7
 
 
 
 
 
b3881ed
6ab99a7
 
 
acc4b2f
 
 
 
6ab99a7
acc4b2f
 
 
 
 
 
 
6ab99a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de6d7c
6ab99a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610f595
a135217
 
 
 
610f595
 
 
 
 
 
 
 
a135217
b3881ed
 
 
 
a135217
b3881ed
 
 
 
6ab99a7
289aa5c
c45a2ea
b3881ed
6ab99a7
 
b3881ed
6ab99a7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr

import torch

import argparse
import pickle as pkl

import decord
from decord import VideoReader
import numpy as np
import yaml
import matplotlib.pyplot as plt
import matplotlib.patches as patches

from cover.datasets import UnifiedFrameSampler, spatial_temporal_view_decomposition
from cover.models import COVER

import pandas as pd

mean, std = (
    torch.FloatTensor([123.675, 116.28, 103.53]),
    torch.FloatTensor([58.395, 57.12, 57.375]),
)

mean_clip, std_clip = (
    torch.FloatTensor([122.77, 116.75, 104.09]),
    torch.FloatTensor([68.50, 66.63, 70.32])
)

sample_interval = 30

normalization_array = {
    "semantic" : [-0.1477,-0.0181],
    "technical": [-1.8762, 1.2428],
    "aesthetic": [-1.2899, 0.5290],
    "overall"  : [-3.2538, 1.6728]
}

comparison_array = {
    "semantic" : [],  # 示例数组
    "technical": [],
    "aesthetic": [],
    "overall"  : []
}

def get_sampler_params(video_path):
    vr = VideoReader(video_path)
    total_frames = len(vr)
    clip_len = (total_frames + sample_interval // 2) // sample_interval
    if clip_len == 0:
        clip_len = 1
    t_frag = clip_len
    
    return total_frames, clip_len, t_frag

def fuse_results(results: list):
    x = (results[0] + results[1] + results[2])
    return {
        "semantic" : results[0],
        "technical": results[1],
        "aesthetic": results[2],
        "overall"  : x,
    }

def normalize_score(score, min_score, max_score):
    return (score - min_score) / (max_score - min_score) * 5

def compare_score(score, score_list):
    better_than = sum(1 for s in score_list if score > s)
    percentage = better_than / len(score_list) * 100
    return f"Better than {percentage:.0f}% videos in YT-UGC" if percentage > 50 else f"Worse than {100-percentage:.0f}% videos in YT-UGC"

def create_bar_chart(scores, comparisons):
    labels = ['Semantic', 'Technical', 'Aesthetic', 'Overall']
    base_colors = ['#d62728', '#1f77b4', '#ff7f0e', '#bcbd22']

    fig, ax = plt.subplots(figsize=(8, 6))

    # Create vertical bars
    bars = ax.bar(labels, scores, color=base_colors, edgecolor='black', width=0.6)

    # Adding the text labels for scores
    for bar, score in zip(bars, scores):
        height = bar.get_height()
        ax.annotate(f'{score:.1f}',
                    xy=(bar.get_x() + bar.get_width() / 2, height),
                    xytext=(0, 3),  # 3 points vertical offset
                    textcoords="offset points",
                    ha='center', va='bottom',
                    color='black')

    # Add comparison text
    # for i, (bar, score) in enumerate(zip(bars, scores)):
    #     ax.annotate(comparisons[i],
    #                 xy=(bar.get_x() + bar.get_width(), bar.get_height() / 2),
    #                 xytext=(5, 0),  # 5 points horizontal offset
    #                 textcoords="offset points",
    #                 ha='left', va='center',
    #                 color=base_colors[i])

    ax.set_xlabel('Categories')
    ax.set_ylabel('Scores')
    ax.set_ylim(0, 5)
    ax.set_title('Video Quality Scores')

    plt.tight_layout()
    image_path = "./scores_bar_chart.png"
    plt.savefig(image_path)
    plt.close(fig)
    return image_path

def inference_one_video(input_video):
    """
    BASIC SETTINGS
    """
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    with open("./cover.yml", "r") as f:
        opt = yaml.safe_load(f)
    
    dopt = opt["data"]["val-ytugc"]["args"]
    temporal_samplers = {}
    
    # auto decision of parameters of sampler
    total_frames, clip_len, t_frag = get_sampler_params(input_video)
                    
    for stype, sopt in dopt["sample_types"].items():
        sopt["clip_len"] = clip_len
        sopt["t_frag"] = t_frag
        if stype == 'technical' or stype == 'aesthetic':
            if total_frames > 1:
                sopt["clip_len"] = clip_len * 2
            if stype == 'technical':
                sopt["aligned"] = sopt["clip_len"]
        temporal_samplers[stype] = UnifiedFrameSampler(
            sopt["clip_len"] // sopt["t_frag"],
            sopt["t_frag"],
            sopt["frame_interval"],
            sopt["num_clips"],
        )

    """
    LOAD MODEL
    """    
    evaluator = COVER(**opt["model"]["args"]).to(device)
    state_dict = torch.load(opt["test_load_path"], map_location=device)
    
    # set strict=False here to avoid error of missing
    # weight of prompt_learner in clip-iqa+, cross-gate
    evaluator.load_state_dict(state_dict['state_dict'], strict=False)

    """
    TESTING
    """
    views, _ = spatial_temporal_view_decomposition(
        input_video, dopt["sample_types"], temporal_samplers
    )

    for k, v in views.items():
        num_clips = dopt["sample_types"][k].get("num_clips", 1)
        if k == 'technical' or k == 'aesthetic':
            views[k] = (
                ((v.permute(1, 2, 3, 0) - mean) / std)
                .permute(3, 0, 1, 2)
                .reshape(v.shape[0], num_clips, -1, *v.shape[2:])
                .transpose(0, 1)
                .to(device)
            )
        elif k == 'semantic':
            views[k] = (
                ((v.permute(1, 2, 3, 0) - mean_clip) / std_clip)
                .permute(3, 0, 1, 2)
                .reshape(v.shape[0], num_clips, -1, *v.shape[2:])
                .transpose(0, 1)
                .to(device)
            )

    results = [r.mean().item() for r in evaluator(views)]
    pred_score = fuse_results(results)

    comparison_array["semantic"]  = pd.read_csv('./prediction_results/youtube_ugc/smos.csv')['Mos']
    comparison_array["technical"] = pd.read_csv('./prediction_results/youtube_ugc/tmos.csv')['Mos']
    comparison_array["aesthetic"] = pd.read_csv('./prediction_results/youtube_ugc/amos.csv')['Mos']
    comparison_array["overall"]   = pd.read_csv('./prediction_results/youtube_ugc/overall.csv')['Mos']

    normalized_scores = [
        normalize_score(pred_score["semantic"] , comparison_array["semantic"].min() , comparison_array["semantic"].max() ),
        normalize_score(pred_score["technical"], comparison_array["technical"].min(), comparison_array["technical"].max()),
        normalize_score(pred_score["aesthetic"], comparison_array["aesthetic"].min(), comparison_array["aesthetic"].max()),
        normalize_score(pred_score["overall"]  , comparison_array["overall"].min()  , comparison_array["overall"].max()  )
    ]

    
    comparisons = [
        compare_score(pred_score["semantic"], comparison_array["semantic"]),
        compare_score(pred_score["technical"], comparison_array["technical"]),
        compare_score(pred_score["aesthetic"], comparison_array["aesthetic"]),
        compare_score(pred_score["overall"], comparison_array["overall"])
    ]
    
    image_path = create_bar_chart(normalized_scores, comparisons)
    return image_path

# Define the input and output types for Gradio using the new API
video_input = gr.Video(label="Input Video")
output_image = gr.Image(label="Scores")

# Create the Gradio interface
gradio_app = gr.Interface(fn=inference_one_video, inputs=video_input, outputs=output_image)

if __name__ == "__main__":
    gradio_app.launch()