File size: 4,247 Bytes
be4b0eb
 
 
 
 
 
 
 
 
90a3578
be4b0eb
 
 
 
 
 
 
 
 
 
 
 
 
8b036d9
be4b0eb
 
 
 
5d76431
84bc8b3
be4b0eb
 
 
 
7c7f7ff
5d76431
8b036d9
cf623e7
 
 
 
 
 
 
84bc8b3
8b036d9
 
 
 
cf623e7
8b036d9
 
 
 
 
 
 
84bc8b3
 
 
 
c76ac5c
a84381f
8b036d9
 
1661c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b036d9
 
be4b0eb
 
 
 
 
8b036d9
 
84bc8b3
66438ba
1661c7f
84bc8b3
8b036d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1661c7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
LEADERBOARD_HEADER = """
<style>
.header-gradient {
    top: 40%;
    bottom: 40%;
    padding: 10px 0px;
    font-weight: bold;
    font-size: 40px;
    font-family: Inter, Arial, Helvetica, sans-serif;
    background: linear-gradient(to right, #FF705B, #FFB457);
    -webkit-text-fill-color: transparent;
    -webkit-background-clip: text;
}

.header-normal {
    top: 40%;
    bottom: 40%;
    padding: 10px 0px;
    font-weight: bold;
    font-size: 40px;
    font-family: Inter, Arial, Helvetica, sans-serif;
}
</style>

<div align="center">
    <span class="header-gradient"> DD-Ranking </span>
    <span class="header-normal"> Leaderboard </span>
</div>
<p align="center">
| <a href="https://nus-hpc-ai-lab.github.io/DD-Ranking/"><b>Documentation</b></a> | <a href="https://github.com/NUS-HPC-AI-Lab/DD-Ranking"><b>Github</b></a> | <a href=""><b>Paper </b> (Coming Soon)</a> | <a href=""><b>Twitter/X</b> (Coming Soon)</a> | <a href=""><b>Developer Slack</b> (Coming Soon)</a> |
</p>"""

LEADERBOARD_INTRODUCTION = """
# DD-Ranking Leaderboard

πŸ† Welcome to the leaderboard of the **DD-Ranking**! 

> DD-Ranking (DD, i.e., Dataset Distillation) is an integrated and easy-to-use benchmark for dataset distillation. It aims to provide a fair evaluation scheme for DD methods that can decouple the impacts from knowledge distillation and data augmentation to reflect the real informativeness of the distilled data.

- **Fair Evaluation**: DD-Ranking provides a fair evaluation scheme for DD methods that can decouple the impacts from knowledge distillation and data augmentation to reflect the real informativeness of the distilled data.
- **Easy-to-use**: DD-Ranking provides a unified interface for dataset distillation evaluation.
- **Extensible**: DD-Ranking supports various datasets and models.
- **Customizable**: DD-Ranking supports various data augmentations and soft label strategies.

**Join Leaderboard**: Please see the [instructions](https://github.com/NUS-HPC-AI-Lab/DD-Ranking/blob/main/CONTRIBUTING.md) to participate.
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
COMING SOON
"""

IPC_INFO = """
Images Per Class
"""

LABEL_TYPE_INFO = """
Hard labels are categorical, having the same format of the real dataset. Soft labels are generated by a teacher model pretrained on the target dataset
"""

WEIGHT_ADJUSTMENT_INTRODUCTION = """
The score for ranking (DD-Ranking Score, DDRS) in the following table is computed by $DDRS = \\frac{e^{w IOR - (1 - w) HLR} - e^{-1}}{e - e^{-1}}$, where $w$ is the weight for the HLR metric.
**You can specify the weight $w$ below.**
"""

METRIC_DEFINITION_INTRODUCTION = """
$\\text{Acc.}$: The accuracy of models trained on different samples.

$\\text{full-hard}$: Full dataset with hard labels.

$\\text{syn-hard}$: Synthetic dataset with hard labels.

$\\text{syn-any}$: Synthetic dataset with personalized evaluation methods (hard or soft labels).

$\\text{rdm-any}$: Randomly selected dataset (under the same compression ratio) with the same personalized evaluation methods.

$\\text{HLR} = \\text{Acc.} \\text{full-hard} - \\text{Acc.} \\text{syn-hard}$: The degree to which the original dataset is recovered under hard labels (hard label recovery).

$\\text{IOR} = \\text{Acc.} \\text{syn-any} - \\text{Acc.} \\text{rdm-any}$: The improvement over random selection when using personalized evaluation methods (improvement over random).
"""

DATASET_LIST = ["CIFAR-10", "CIFAR-100", "Tiny-ImageNet"]
IPC_LIST = ["IPC-1", "IPC-10", "IPC-50"]
DATASET_IPC_LIST = {
    "CIFAR-10": ["IPC-1", "IPC-10", "IPC-50"],
    "CIFAR-100": ["IPC-1", "IPC-10", "IPC-50"],
    "Tiny-ImageNet": ["IPC-10", "IPC-50"],
}
LABEL_TYPE_LIST = ["Hard Label", "Soft Label"]

METRICS = ["HLR", "IOR"]
METRICS_SIGN = [1.0, -1.0]
COLUMN_NAMES = ["Ranking", "Method", "Verified", "Date", "Label Type", "HLR%", "IOR%", "DDRS"]
DATA_TITLE_TYPE = ['number', 'markdown', 'markdown', 'markdown', 'markdown', 'number', 'number', 'number']

DATASET_MAPPING = {
    "CIFAR-10": 0,
    "CIFAR-100": 1,
    "Tiny-ImageNet": 2,
}

IPC_MAPPING = {
    "IPC-1": 0,
    "IPC-10": 1,
    "IPC-50": 2,
}

LABEL_MAPPING = {
    "Hard Label": 0,
    "Soft Label": 1,
}