File size: 6,143 Bytes
0b1b527
9e32665
0b1b527
 
 
 
 
9b27ece
 
 
 
 
 
0b1b527
9e32665
 
0b1b527
 
 
 
 
 
 
 
9b27ece
 
97e4cd0
 
 
9b27ece
 
 
79455d5
9e32665
0b1b527
9b27ece
0b1b527
79455d5
9e32665
 
79455d5
0b1b527
 
 
9b27ece
 
0b1b527
9e32665
0b1b527
9e32665
0b1b527
 
 
 
97e4cd0
0b1b527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97e4cd0
 
0b1b527
 
 
9b27ece
0b1b527
 
9b27ece
 
0b1b527
 
 
9b27ece
 
 
 
 
 
 
 
97e4cd0
 
 
 
9b27ece
 
9e32665
 
 
 
 
 
 
9b27ece
97e4cd0
 
0b1b527
9b27ece
0b1b527
 
 
 
 
 
 
 
 
9b27ece
97e4cd0
9b27ece
 
 
 
 
 
 
 
97e4cd0
 
 
 
 
 
 
 
9b27ece
97e4cd0
0b1b527
 
 
 
 
 
9b27ece
0b1b527
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr
import numpy as np
import pandas as pd

from constants import *


def get_data(verified, dataset, ipc, label_type, metric_weights=None):
    if metric_weights is None:
        metric_weights = [1.0 / len(METRICS) for _ in METRICS]
    if not isinstance(label_type, list):
        label_type = [label_type]

    data = pd.read_csv("data.csv")
    # filter data with no hlr or ior (no nan)
    data = data.dropna(subset=["hlr", "ior"])
    data["verified"] = data["verified"].apply(lambda x: bool(x))
    data["dataset"] = data["dataset"].apply(lambda x: DATASET_LIST[x])
    data["ipc"] = data["ipc"].apply(lambda x: IPC_LIST[x])
    data["label_type"] = data["label_type"].apply(lambda x: LABEL_TYPE_LIST[x])
    if verified:
        data = data[data["verified"] == verified]
    data = data[data["dataset"] == dataset]
    data = data[data["ipc"] == ipc]
    data = data[data["label_type"].apply(lambda x: x in label_type)]

    if len(data) == 0:
        return pd.DataFrame(columns=COLUMN_NAMES)

    # create a new column for the score
    data["score"] = data[METRICS[0].lower()] * 0.0
    for i, metric in enumerate(METRICS):
        data["score"] += data[metric.lower()] * metric_weights[i] * METRICS_SIGN[i]
    data["score"] = (np.exp(-0.01 * data["score"]) - np.exp(-1.0)) / (np.exp(1.0) - np.exp(-1.0))
    data = data.sort_values(by="score", ascending=False)
    data["ranking"] = range(1, len(data) + 1)

    for metric in METRICS:
        data[metric.lower()] = data[metric.lower()].apply(lambda x: round(x, 3))
    data["score"] = data["score"].apply(lambda x: round(x, 3))

    # formatting
    data["method"] = "[" + data["method"] + "](" + data["method_reference"] + ")"
    data["verified"] = data["verified"].apply(lambda x: "✅" if x else "")
    data = data.drop(columns=["method_reference", "dataset", "ipc"])
    data = data[['ranking', 'method', 'verified', 'date', 'label_type', 'hlr', 'ior', 'score']]
    if label_type == "Hard Label":
        data = data.rename(columns={"ranking": "Ranking", "method": "Method", "date": "Date", "label_type": "Label Type", "hlr": "HLR%↓", "ior": "IOR%↑", "score": "DDRS↑", "verified": "Verified"})
    else:
        data = data.rename(columns={"ranking": "Ranking", "method": "Method", "date": "Date", "label_type": "Label Type", "hlr": "HLR%↓", "ior": "IOR%↑", "score": "DDRS↑", "verified": "Verified"})
    return data


with gr.Blocks() as leaderboard:
    gr.HTML(LEADERBOARD_HEADER)
    gr.Markdown(LEADERBOARD_INTRODUCTION)

    verified = gr.Checkbox(
        label="Verified by DD-Ranking Team (Uncheck to view all submissions)",
        value=True,
        interactive=True
    )

    dataset = gr.Radio(
        label="Dataset",
        choices=DATASET_LIST,
        value=DATASET_LIST[0],
        interactive=True,
    )
    ipc = gr.Radio(
        label="IPC",
        choices=DATASET_IPC_LIST[dataset.value],
        value=DATASET_IPC_LIST[dataset.value][0],
        interactive=True,
        info=IPC_INFO
    )
    label = gr.CheckboxGroup(
        label="Label Type",
        choices=LABEL_TYPE_LIST,
        value=LABEL_TYPE_LIST,
        info=LABEL_TYPE_INFO,
        interactive=True,
    )

    with gr.Accordion("Adjust Score Weights", open=False):
        gr.Markdown(WEIGHT_ADJUSTMENT_INTRODUCTION, latex_delimiters=[
              {'left': '$$', 'right': '$$', 'display': True},
              {'left': '$', 'right': '$', 'display': False},
              {'left': '\\(', 'right': '\\)', 'display': False},
              {'left': '\\[', 'right': '\\]', 'display': True}
          ])
        metric_sliders = []
        # for metric in METRICS:
        #     metric_sliders.append(gr.Slider(label=f"Weight for {metric}", minimum=0.0, maximum=1.0, value=0.5, interactive=True))
        metric_sliders.append(
            gr.Slider(label=f"Weight for HLR", minimum=0.0, maximum=1.0, value=0.5, interactive=True))
        adjust_btn = gr.Button("Adjust Weights")

    with gr.Accordion("Metric Definitions", open=False):
        gr.Markdown(METRIC_DEFINITION_INTRODUCTION, latex_delimiters=[
              {'left': '$$', 'right': '$$', 'display': True},
              {'left': '$', 'right': '$', 'display': False},
              {'left': '\\(', 'right': '\\)', 'display': False},
              {'left': '\\[', 'right': '\\]', 'display': True}
          ])

    # metric_weights = [s.value for s in metric_sliders]
    metric_weights = [metric_sliders[0].value, 1.0 - metric_sliders[0].value]
    board = gr.components.Dataframe(
        value=get_data(verified.value, dataset.value, ipc.value, label.value, metric_weights),
        headers=COLUMN_NAMES,
        type="pandas",
        datatype=DATA_TITLE_TYPE,
        interactive=False,
        visible=True,
        max_height=500,
    )

    for component in [verified, dataset, ipc, label]:
        component.change(lambda v, d, i, l, *m: gr.components.Dataframe(
            value=get_data(v, d, i, l, [m[0], 1.0 - m[0]]),
            headers=COLUMN_NAMES,
            type="pandas",
            datatype=DATA_TITLE_TYPE,
            interactive=False,
            visible=True,
            max_height=500,
        ), inputs=[verified, dataset, ipc, label] + metric_sliders, outputs=board)

    dataset.change(lambda d, i: gr.Radio(
        label="IPC",
        choices=DATASET_IPC_LIST[d],
        value=i if i in DATASET_IPC_LIST[d] else DATASET_IPC_LIST[d][0],
        interactive=True,
        info=IPC_INFO
    ), inputs=[dataset, ipc], outputs=ipc)

    adjust_btn.click(fn=lambda v, d, i, l, *m: gr.components.Dataframe(
            value=get_data(v, d, i, l, [m[0], 1.0 - m[0]]),
            headers=COLUMN_NAMES,
            type="pandas",
            datatype=DATA_TITLE_TYPE,
            interactive=False,
            visible=True,
            max_height=500,
        ), inputs=[verified, dataset, ipc, label] + metric_sliders, outputs=board)

    citation_button = gr.Textbox(
        value=CITATION_BUTTON_TEXT,
        label=CITATION_BUTTON_LABEL,
        elem_id="citation-button",
        lines=6,
        show_copy_button=True,
    )

leaderboard.launch()