Spaces:
Sleeping
Sleeping
File size: 6,143 Bytes
0b1b527 9e32665 0b1b527 9b27ece 0b1b527 9e32665 0b1b527 9b27ece 97e4cd0 9b27ece 79455d5 9e32665 0b1b527 9b27ece 0b1b527 79455d5 9e32665 79455d5 0b1b527 9b27ece 0b1b527 9e32665 0b1b527 9e32665 0b1b527 97e4cd0 0b1b527 97e4cd0 0b1b527 9b27ece 0b1b527 9b27ece 0b1b527 9b27ece 97e4cd0 9b27ece 9e32665 9b27ece 97e4cd0 0b1b527 9b27ece 0b1b527 9b27ece 97e4cd0 9b27ece 97e4cd0 9b27ece 97e4cd0 0b1b527 9b27ece 0b1b527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import gradio as gr
import numpy as np
import pandas as pd
from constants import *
def get_data(verified, dataset, ipc, label_type, metric_weights=None):
if metric_weights is None:
metric_weights = [1.0 / len(METRICS) for _ in METRICS]
if not isinstance(label_type, list):
label_type = [label_type]
data = pd.read_csv("data.csv")
# filter data with no hlr or ior (no nan)
data = data.dropna(subset=["hlr", "ior"])
data["verified"] = data["verified"].apply(lambda x: bool(x))
data["dataset"] = data["dataset"].apply(lambda x: DATASET_LIST[x])
data["ipc"] = data["ipc"].apply(lambda x: IPC_LIST[x])
data["label_type"] = data["label_type"].apply(lambda x: LABEL_TYPE_LIST[x])
if verified:
data = data[data["verified"] == verified]
data = data[data["dataset"] == dataset]
data = data[data["ipc"] == ipc]
data = data[data["label_type"].apply(lambda x: x in label_type)]
if len(data) == 0:
return pd.DataFrame(columns=COLUMN_NAMES)
# create a new column for the score
data["score"] = data[METRICS[0].lower()] * 0.0
for i, metric in enumerate(METRICS):
data["score"] += data[metric.lower()] * metric_weights[i] * METRICS_SIGN[i]
data["score"] = (np.exp(-0.01 * data["score"]) - np.exp(-1.0)) / (np.exp(1.0) - np.exp(-1.0))
data = data.sort_values(by="score", ascending=False)
data["ranking"] = range(1, len(data) + 1)
for metric in METRICS:
data[metric.lower()] = data[metric.lower()].apply(lambda x: round(x, 3))
data["score"] = data["score"].apply(lambda x: round(x, 3))
# formatting
data["method"] = "[" + data["method"] + "](" + data["method_reference"] + ")"
data["verified"] = data["verified"].apply(lambda x: "✅" if x else "")
data = data.drop(columns=["method_reference", "dataset", "ipc"])
data = data[['ranking', 'method', 'verified', 'date', 'label_type', 'hlr', 'ior', 'score']]
if label_type == "Hard Label":
data = data.rename(columns={"ranking": "Ranking", "method": "Method", "date": "Date", "label_type": "Label Type", "hlr": "HLR%↓", "ior": "IOR%↑", "score": "DDRS↑", "verified": "Verified"})
else:
data = data.rename(columns={"ranking": "Ranking", "method": "Method", "date": "Date", "label_type": "Label Type", "hlr": "HLR%↓", "ior": "IOR%↑", "score": "DDRS↑", "verified": "Verified"})
return data
with gr.Blocks() as leaderboard:
gr.HTML(LEADERBOARD_HEADER)
gr.Markdown(LEADERBOARD_INTRODUCTION)
verified = gr.Checkbox(
label="Verified by DD-Ranking Team (Uncheck to view all submissions)",
value=True,
interactive=True
)
dataset = gr.Radio(
label="Dataset",
choices=DATASET_LIST,
value=DATASET_LIST[0],
interactive=True,
)
ipc = gr.Radio(
label="IPC",
choices=DATASET_IPC_LIST[dataset.value],
value=DATASET_IPC_LIST[dataset.value][0],
interactive=True,
info=IPC_INFO
)
label = gr.CheckboxGroup(
label="Label Type",
choices=LABEL_TYPE_LIST,
value=LABEL_TYPE_LIST,
info=LABEL_TYPE_INFO,
interactive=True,
)
with gr.Accordion("Adjust Score Weights", open=False):
gr.Markdown(WEIGHT_ADJUSTMENT_INTRODUCTION, latex_delimiters=[
{'left': '$$', 'right': '$$', 'display': True},
{'left': '$', 'right': '$', 'display': False},
{'left': '\\(', 'right': '\\)', 'display': False},
{'left': '\\[', 'right': '\\]', 'display': True}
])
metric_sliders = []
# for metric in METRICS:
# metric_sliders.append(gr.Slider(label=f"Weight for {metric}", minimum=0.0, maximum=1.0, value=0.5, interactive=True))
metric_sliders.append(
gr.Slider(label=f"Weight for HLR", minimum=0.0, maximum=1.0, value=0.5, interactive=True))
adjust_btn = gr.Button("Adjust Weights")
with gr.Accordion("Metric Definitions", open=False):
gr.Markdown(METRIC_DEFINITION_INTRODUCTION, latex_delimiters=[
{'left': '$$', 'right': '$$', 'display': True},
{'left': '$', 'right': '$', 'display': False},
{'left': '\\(', 'right': '\\)', 'display': False},
{'left': '\\[', 'right': '\\]', 'display': True}
])
# metric_weights = [s.value for s in metric_sliders]
metric_weights = [metric_sliders[0].value, 1.0 - metric_sliders[0].value]
board = gr.components.Dataframe(
value=get_data(verified.value, dataset.value, ipc.value, label.value, metric_weights),
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITLE_TYPE,
interactive=False,
visible=True,
max_height=500,
)
for component in [verified, dataset, ipc, label]:
component.change(lambda v, d, i, l, *m: gr.components.Dataframe(
value=get_data(v, d, i, l, [m[0], 1.0 - m[0]]),
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITLE_TYPE,
interactive=False,
visible=True,
max_height=500,
), inputs=[verified, dataset, ipc, label] + metric_sliders, outputs=board)
dataset.change(lambda d, i: gr.Radio(
label="IPC",
choices=DATASET_IPC_LIST[d],
value=i if i in DATASET_IPC_LIST[d] else DATASET_IPC_LIST[d][0],
interactive=True,
info=IPC_INFO
), inputs=[dataset, ipc], outputs=ipc)
adjust_btn.click(fn=lambda v, d, i, l, *m: gr.components.Dataframe(
value=get_data(v, d, i, l, [m[0], 1.0 - m[0]]),
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITLE_TYPE,
interactive=False,
visible=True,
max_height=500,
), inputs=[verified, dataset, ipc, label] + metric_sliders, outputs=board)
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=6,
show_copy_button=True,
)
leaderboard.launch()
|