Sonny4Sonnix commited on
Commit
b0e5ce2
·
1 Parent(s): bda5fd7

Upload 2 files

Browse files
Files changed (2) hide show
  1. readme.md +132 -0
  2. requirements.txt +74 -0
readme.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Streamlit Web App For Sales Prediction
2
+ # LP4 Embedding a machine learning model in a GUI
3
+ *short project description*
4
+
5
+ ## Summary
6
+ | Code | Name | Published Article | Deployed App |
7
+ |-----------|-------------|:-------------:|------:|
8
+ | LP4 Embedding a machine learning model in a GUI|streamlit-web-app-for-sales-prediction| [Article]https://medium.com/@otchie.sonny/building-streamlit-web-app-for-sales-prediction-with-facebook-prophet-26c84ed8f625 | [Deployed App](http://localhost:8503) |
9
+ |
10
+ ## Description
11
+
12
+ Favorita Stores Sales Prediction App
13
+ This web application allows users to predict sales for Favorita stores based on historical data using the Facebook Prophet machine learning model. Users can input a specific date, and the app will provide a sales prediction for that date.
14
+
15
+ Setup
16
+ Make sure you have Python installed on your system.
17
+
18
+ Clone this repository to your local machine.
19
+
20
+ Copy code
21
+
22
+ git clone <repository-url>
23
+ Navigate to the project directory.
24
+
25
+ Copy code
26
+
27
+ cd <project-directory>
28
+ Set up a virtual environment (optional but recommended).
29
+
30
+ Copy code
31
+
32
+ python -m venv myenv
33
+ Activate the virtual environment.
34
+
35
+ On Windows:
36
+
37
+ Copy code
38
+
39
+ myenv\Scripts\activate
40
+ On macOS and Linux:
41
+
42
+ Copy code
43
+
44
+ source myenv/bin/activate
45
+ Install the required packages.
46
+
47
+ Copy code
48
+
49
+ pip install -r requirements.txt
50
+ Usage
51
+ Run the Streamlit app.
52
+
53
+ Copy code
54
+
55
+ streamlit run sales_prediction_app.py
56
+
57
+ The app will start a local web server, and you can access it by opening the provided URL in your browser.
58
+
59
+ Once the app is loaded, you can select a specific date from the sidebar.
60
+
61
+ The app will then display the predicted sales for that date based on the historical data and the trained Prophet model.
62
+
63
+ Contributing
64
+ Contributions to this project are welcome! If you have any ideas, suggestions, or bug reports, please open an issue or submit a pull request.
65
+
66
+ Favorita Stores Sales Prediction App
67
+ This web application allows users to predict sales for Favorita stores based on historical data using the Facebook Prophet machine learning model. Users can input a specific date, and the app will provide a sales prediction for that date.
68
+
69
+ Setup
70
+ Make sure you have Python installed on your system.
71
+
72
+ Clone this repository to your local machine.
73
+
74
+
75
+ Copy code
76
+
77
+ git clone <repository-url>
78
+ Navigate to the project directory.
79
+
80
+
81
+ Copy code
82
+
83
+ cd <project-directory>
84
+ Set up a virtual environment (optional but recommended).
85
+
86
+
87
+ Copy code
88
+
89
+ python -m venv myenv
90
+ Activate the virtual environment.
91
+
92
+ On Windows:
93
+
94
+
95
+ Copy code
96
+
97
+ myenv\Scripts\activate
98
+ On macOS and Linux:
99
+
100
+
101
+ Copy code
102
+ source myenv/bin/activate
103
+ Install the required packages.
104
+
105
+
106
+ Copy code
107
+
108
+ pip install -r requirements.txt
109
+ Usage
110
+ Run the Streamlit app.
111
+
112
+
113
+ Copy code
114
+
115
+ streamlit run sales_prediction_app.py
116
+ The app will start a local web server, and you can access it by opening the provided URL in your browser.
117
+
118
+ Once the app is loaded, you can select a specific date from the sidebar.
119
+
120
+ The app will then display the predicted sales for that date based on the historical data and the trained Prophet model.
121
+
122
+ Contributing
123
+ Contributions to this project are welcome! If you have any ideas, suggestions, or bug reports, please open an issue or submit a pull request.
124
+
125
+
126
+ Feel free to customize the read.md file based on your specific project details and requirements.
127
+ Please make sure to update tests as appropriate. Contact me via my email: [email protected]
128
+
129
+ ## Author
130
+ Sonny Agorvor-Otchie.
131
+
132
+
requirements.txt ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ altair==5.0.1
2
+ attrs==23.1.0
3
+ blinker==1.6.2
4
+ cachetools==5.3.1
5
+ category==0.1.0
6
+ category-encoders==2.6.1
7
+ certifi==2023.5.7
8
+ charset-normalizer==3.1.0
9
+ click==8.1.3
10
+ cmdstanpy==1.1.0
11
+ colorama==0.4.6
12
+ contourpy==1.1.0
13
+ convertdate==2.4.0
14
+ cycler==0.11.0
15
+ decorator==5.1.1
16
+ encoders==0.0.3
17
+ ephem==4.1.4
18
+ fonttools==4.40.0
19
+ gitdb==4.0.10
20
+ GitPython==3.1.31
21
+ holidays==0.27.1
22
+ idna==3.4
23
+ importlib-metadata==6.7.0
24
+ importlib-resources==5.12.0
25
+ Jinja2==3.1.2
26
+ joblib==1.2.0
27
+ jsonschema==4.17.3
28
+ kiwisolver==1.4.4
29
+ LunarCalendar==0.0.9
30
+ markdown-it-py==3.0.0
31
+ MarkupSafe==2.1.3
32
+ matplotlib==3.7.1
33
+ mdurl==0.1.2
34
+ numpy==1.25.0
35
+ packaging==23.1
36
+ pandas==2.0.2
37
+ patsy==0.5.3
38
+ Pillow==9.5.0
39
+ plotly==5.15.0
40
+ prophet==1.1.4
41
+ protobuf==4.23.3
42
+ pyarrow==12.0.1
43
+ pydeck==0.8.1b0
44
+ Pygments==2.15.1
45
+ PyMeeus==0.5.12
46
+ Pympler==1.0.1
47
+ pyparsing==3.1.0
48
+ pyrsistent==0.19.3
49
+ python-dateutil==2.8.2
50
+ pytz==2023.3
51
+ pytz-deprecation-shim==0.1.0.post0
52
+ requests==2.31.0
53
+ rich==13.4.2
54
+ rust_category==0.2.0
55
+ scikit-learn==1.2.2
56
+ scipy==1.10.1
57
+ seaborn==0.12.2
58
+ six==1.16.0
59
+ smmap==5.0.0
60
+ statsmodels==0.14.0
61
+ streamlit==1.23.1
62
+ tenacity==8.2.2
63
+ threadpoolctl==3.1.0
64
+ toml==0.10.2
65
+ toolz==0.12.0
66
+ tornado==6.3.2
67
+ tqdm==4.65.0
68
+ typing_extensions==4.6.3
69
+ tzdata==2023.3
70
+ tzlocal==4.3.1
71
+ urllib3==2.0.3
72
+ validators==0.20.0
73
+ watchdog==3.0.0
74
+ zipp==3.15.0