Commit
·
b0e5ce2
1
Parent(s):
bda5fd7
Upload 2 files
Browse files- readme.md +132 -0
- requirements.txt +74 -0
readme.md
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Streamlit Web App For Sales Prediction
|
2 |
+
# LP4 Embedding a machine learning model in a GUI
|
3 |
+
*short project description*
|
4 |
+
|
5 |
+
## Summary
|
6 |
+
| Code | Name | Published Article | Deployed App |
|
7 |
+
|-----------|-------------|:-------------:|------:|
|
8 |
+
| LP4 Embedding a machine learning model in a GUI|streamlit-web-app-for-sales-prediction| [Article]https://medium.com/@otchie.sonny/building-streamlit-web-app-for-sales-prediction-with-facebook-prophet-26c84ed8f625 | [Deployed App](http://localhost:8503) |
|
9 |
+
|
|
10 |
+
## Description
|
11 |
+
|
12 |
+
Favorita Stores Sales Prediction App
|
13 |
+
This web application allows users to predict sales for Favorita stores based on historical data using the Facebook Prophet machine learning model. Users can input a specific date, and the app will provide a sales prediction for that date.
|
14 |
+
|
15 |
+
Setup
|
16 |
+
Make sure you have Python installed on your system.
|
17 |
+
|
18 |
+
Clone this repository to your local machine.
|
19 |
+
|
20 |
+
Copy code
|
21 |
+
|
22 |
+
git clone <repository-url>
|
23 |
+
Navigate to the project directory.
|
24 |
+
|
25 |
+
Copy code
|
26 |
+
|
27 |
+
cd <project-directory>
|
28 |
+
Set up a virtual environment (optional but recommended).
|
29 |
+
|
30 |
+
Copy code
|
31 |
+
|
32 |
+
python -m venv myenv
|
33 |
+
Activate the virtual environment.
|
34 |
+
|
35 |
+
On Windows:
|
36 |
+
|
37 |
+
Copy code
|
38 |
+
|
39 |
+
myenv\Scripts\activate
|
40 |
+
On macOS and Linux:
|
41 |
+
|
42 |
+
Copy code
|
43 |
+
|
44 |
+
source myenv/bin/activate
|
45 |
+
Install the required packages.
|
46 |
+
|
47 |
+
Copy code
|
48 |
+
|
49 |
+
pip install -r requirements.txt
|
50 |
+
Usage
|
51 |
+
Run the Streamlit app.
|
52 |
+
|
53 |
+
Copy code
|
54 |
+
|
55 |
+
streamlit run sales_prediction_app.py
|
56 |
+
|
57 |
+
The app will start a local web server, and you can access it by opening the provided URL in your browser.
|
58 |
+
|
59 |
+
Once the app is loaded, you can select a specific date from the sidebar.
|
60 |
+
|
61 |
+
The app will then display the predicted sales for that date based on the historical data and the trained Prophet model.
|
62 |
+
|
63 |
+
Contributing
|
64 |
+
Contributions to this project are welcome! If you have any ideas, suggestions, or bug reports, please open an issue or submit a pull request.
|
65 |
+
|
66 |
+
Favorita Stores Sales Prediction App
|
67 |
+
This web application allows users to predict sales for Favorita stores based on historical data using the Facebook Prophet machine learning model. Users can input a specific date, and the app will provide a sales prediction for that date.
|
68 |
+
|
69 |
+
Setup
|
70 |
+
Make sure you have Python installed on your system.
|
71 |
+
|
72 |
+
Clone this repository to your local machine.
|
73 |
+
|
74 |
+
|
75 |
+
Copy code
|
76 |
+
|
77 |
+
git clone <repository-url>
|
78 |
+
Navigate to the project directory.
|
79 |
+
|
80 |
+
|
81 |
+
Copy code
|
82 |
+
|
83 |
+
cd <project-directory>
|
84 |
+
Set up a virtual environment (optional but recommended).
|
85 |
+
|
86 |
+
|
87 |
+
Copy code
|
88 |
+
|
89 |
+
python -m venv myenv
|
90 |
+
Activate the virtual environment.
|
91 |
+
|
92 |
+
On Windows:
|
93 |
+
|
94 |
+
|
95 |
+
Copy code
|
96 |
+
|
97 |
+
myenv\Scripts\activate
|
98 |
+
On macOS and Linux:
|
99 |
+
|
100 |
+
|
101 |
+
Copy code
|
102 |
+
source myenv/bin/activate
|
103 |
+
Install the required packages.
|
104 |
+
|
105 |
+
|
106 |
+
Copy code
|
107 |
+
|
108 |
+
pip install -r requirements.txt
|
109 |
+
Usage
|
110 |
+
Run the Streamlit app.
|
111 |
+
|
112 |
+
|
113 |
+
Copy code
|
114 |
+
|
115 |
+
streamlit run sales_prediction_app.py
|
116 |
+
The app will start a local web server, and you can access it by opening the provided URL in your browser.
|
117 |
+
|
118 |
+
Once the app is loaded, you can select a specific date from the sidebar.
|
119 |
+
|
120 |
+
The app will then display the predicted sales for that date based on the historical data and the trained Prophet model.
|
121 |
+
|
122 |
+
Contributing
|
123 |
+
Contributions to this project are welcome! If you have any ideas, suggestions, or bug reports, please open an issue or submit a pull request.
|
124 |
+
|
125 |
+
|
126 |
+
Feel free to customize the read.md file based on your specific project details and requirements.
|
127 |
+
Please make sure to update tests as appropriate. Contact me via my email: [email protected]
|
128 |
+
|
129 |
+
## Author
|
130 |
+
Sonny Agorvor-Otchie.
|
131 |
+
|
132 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair==5.0.1
|
2 |
+
attrs==23.1.0
|
3 |
+
blinker==1.6.2
|
4 |
+
cachetools==5.3.1
|
5 |
+
category==0.1.0
|
6 |
+
category-encoders==2.6.1
|
7 |
+
certifi==2023.5.7
|
8 |
+
charset-normalizer==3.1.0
|
9 |
+
click==8.1.3
|
10 |
+
cmdstanpy==1.1.0
|
11 |
+
colorama==0.4.6
|
12 |
+
contourpy==1.1.0
|
13 |
+
convertdate==2.4.0
|
14 |
+
cycler==0.11.0
|
15 |
+
decorator==5.1.1
|
16 |
+
encoders==0.0.3
|
17 |
+
ephem==4.1.4
|
18 |
+
fonttools==4.40.0
|
19 |
+
gitdb==4.0.10
|
20 |
+
GitPython==3.1.31
|
21 |
+
holidays==0.27.1
|
22 |
+
idna==3.4
|
23 |
+
importlib-metadata==6.7.0
|
24 |
+
importlib-resources==5.12.0
|
25 |
+
Jinja2==3.1.2
|
26 |
+
joblib==1.2.0
|
27 |
+
jsonschema==4.17.3
|
28 |
+
kiwisolver==1.4.4
|
29 |
+
LunarCalendar==0.0.9
|
30 |
+
markdown-it-py==3.0.0
|
31 |
+
MarkupSafe==2.1.3
|
32 |
+
matplotlib==3.7.1
|
33 |
+
mdurl==0.1.2
|
34 |
+
numpy==1.25.0
|
35 |
+
packaging==23.1
|
36 |
+
pandas==2.0.2
|
37 |
+
patsy==0.5.3
|
38 |
+
Pillow==9.5.0
|
39 |
+
plotly==5.15.0
|
40 |
+
prophet==1.1.4
|
41 |
+
protobuf==4.23.3
|
42 |
+
pyarrow==12.0.1
|
43 |
+
pydeck==0.8.1b0
|
44 |
+
Pygments==2.15.1
|
45 |
+
PyMeeus==0.5.12
|
46 |
+
Pympler==1.0.1
|
47 |
+
pyparsing==3.1.0
|
48 |
+
pyrsistent==0.19.3
|
49 |
+
python-dateutil==2.8.2
|
50 |
+
pytz==2023.3
|
51 |
+
pytz-deprecation-shim==0.1.0.post0
|
52 |
+
requests==2.31.0
|
53 |
+
rich==13.4.2
|
54 |
+
rust_category==0.2.0
|
55 |
+
scikit-learn==1.2.2
|
56 |
+
scipy==1.10.1
|
57 |
+
seaborn==0.12.2
|
58 |
+
six==1.16.0
|
59 |
+
smmap==5.0.0
|
60 |
+
statsmodels==0.14.0
|
61 |
+
streamlit==1.23.1
|
62 |
+
tenacity==8.2.2
|
63 |
+
threadpoolctl==3.1.0
|
64 |
+
toml==0.10.2
|
65 |
+
toolz==0.12.0
|
66 |
+
tornado==6.3.2
|
67 |
+
tqdm==4.65.0
|
68 |
+
typing_extensions==4.6.3
|
69 |
+
tzdata==2023.3
|
70 |
+
tzlocal==4.3.1
|
71 |
+
urllib3==2.0.3
|
72 |
+
validators==0.20.0
|
73 |
+
watchdog==3.0.0
|
74 |
+
zipp==3.15.0
|