Sonny4Sonnix commited on
Commit
206327a
·
1 Parent(s): 14508ad

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +9 -3
main.py CHANGED
@@ -12,6 +12,7 @@ from sklearn.preprocessing import StandardScaler
12
  from sklearn.compose import ColumnTransformer
13
  from sklearn.feature_selection import f_classif
14
 
 
15
  app = FastAPI()
16
  templates = Jinja2Templates(directory="templates")
17
 
@@ -31,11 +32,16 @@ model_input = joblib.load("model_1.joblib")
31
  @app.post("/sepsis_prediction")
32
  async def predict(input: InputFeatures):
33
  # Numeric Features
34
- num_features = [
35
  ['Plasma_glucose', 'Blood_Work_Result_1', 'Blood_Pressure',
36
  'Blood_Work_Result_2', 'Blood_Work_Result_3', 'Body_mass_index',
37
- 'Blood_Work_Result_4', 'patients_age']
38
- ]
 
 
 
 
 
39
 
40
  XGB = Pipeline([
41
  ("col_trans", full_pipeline), # You need to define full_pipeline
 
12
  from sklearn.compose import ColumnTransformer
13
  from sklearn.feature_selection import f_classif
14
 
15
+
16
  app = FastAPI()
17
  templates = Jinja2Templates(directory="templates")
18
 
 
32
  @app.post("/sepsis_prediction")
33
  async def predict(input: InputFeatures):
34
  # Numeric Features
35
+ num_attr = [
36
  ['Plasma_glucose', 'Blood_Work_Result_1', 'Blood_Pressure',
37
  'Blood_Work_Result_2', 'Blood_Work_Result_3', 'Body_mass_index',
38
+ 'Blood_Work_Result_4', 'patients_age']]
39
+
40
+ #creating pipelines
41
+ num_pipeline= Pipeline([('imputer', SimpleImputer()),('scaler', StandardScaler())])
42
+
43
+
44
+ full_pipeline=ColumnTransformer([('num_pipe',num_pipeline,num_attr)])
45
 
46
  XGB = Pipeline([
47
  ("col_trans", full_pipeline), # You need to define full_pipeline