Spaces:
Sleeping
Sleeping
File size: 4,982 Bytes
1cc6224 82f74f0 0fef757 50b17de 1cc6224 19f92db 1cc6224 50b17de 3e6a31d 50b17de a3d0d88 3e6a31d a3d0d88 3e6a31d 1cc6224 50b17de c222e1e 50b17de 1cc6224 a3d0d88 1cc6224 50b17de 1cc6224 50b17de a3d0d88 50b17de 3e6a31d 19f92db 3e6a31d 094d69d 50b17de 19f92db 1cc6224 3e6a31d 19f92db 3e6a31d 1cc6224 19f92db 1cc6224 50b17de 19f92db 1cc6224 19f92db 1cc6224 19f92db 50b17de 19f92db 50b17de 1cc6224 50b17de 1cc6224 acdd8eb 1cc6224 19f92db 1cc6224 50b17de 1cc6224 50b17de 3e6a31d 19f92db 3e6a31d 1cc6224 50b17de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
import re
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing song recommendation details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def preprocess_text(text):
"""
Preprocess text by lowercasing and removing special characters.
"""
text = text.lower()
text = re.sub(r'[^a-z0-9\s]', '', text)
return text
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [preprocess_text(line.strip()) for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segments(user_query, segments, top_k=5):
try:
# Preprocess and lowercase the query for better matching
lower_query = preprocess_text(user_query)
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the indices of the top-k most similar segments
top_k_indices = similarities.topk(top_k).indices
# Return the most relevant segments
return [segments[idx] for idx in top_k_indices]
except Exception as e:
print(f"Error in finding relevant segments: {e}")
return []
def generate_response(user_query, relevant_segments):
"""
Generate a response providing song recommendations based on mood.
"""
try:
system_message = "You are a music recommendation chatbot designed to suggest songs based on mood, catering to Gen Z's taste in music."
user_message = f"User query: {user_query}. Recommended songs: {', '.join(relevant_segments)}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150,
temperature=0.7,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to the Song Recommendation Bot! Ask me for song recommendations based on your mood."
relevant_segments = find_relevant_segments(question, segments)
if not relevant_segments:
return "Could not find specific song recommendations. Please refine your question."
response = generate_response(question, relevant_segments)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🎶: Welcome to SongSeeker!
## I am here to help you find the perfect songs based on your mood!
"""
topics = """
### Feel free to ask me for song recommendations for:
- Sad mood
- Happy mood
- Angry mood
- Workout
- Chilling
- Study
- Eating a meal
- Nostalgic
- Self care
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(css="custom.css") as demo:
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What's your mood or activity?")
answer = gr.Textbox(label="Song Recommendations", placeholder="Your recommendations will appear here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|