File size: 4,982 Bytes
1cc6224
 
 
 
82f74f0
0fef757
50b17de
1cc6224
19f92db
1cc6224
 
50b17de
3e6a31d
 
 
 
 
 
50b17de
a3d0d88
 
 
 
 
 
 
 
3e6a31d
 
 
 
 
 
a3d0d88
3e6a31d
 
 
1cc6224
 
50b17de
c222e1e
50b17de
 
1cc6224
a3d0d88
 
1cc6224
 
 
 
 
50b17de
 
 
 
1cc6224
50b17de
 
 
a3d0d88
50b17de
3e6a31d
19f92db
3e6a31d
094d69d
 
50b17de
19f92db
 
 
 
1cc6224
 
3e6a31d
 
19f92db
3e6a31d
1cc6224
 
 
19f92db
1cc6224
 
 
50b17de
19f92db
1cc6224
19f92db
1cc6224
19f92db
 
50b17de
 
19f92db
50b17de
1cc6224
50b17de
1cc6224
 
acdd8eb
 
1cc6224
 
19f92db
 
 
 
 
 
 
 
 
 
1cc6224
50b17de
1cc6224
50b17de
3e6a31d
 
 
 
 
 
19f92db
 
3e6a31d
 
1cc6224
50b17de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
import re
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing song recommendation details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def preprocess_text(text):
    """
    Preprocess text by lowercasing and removing special characters.
    """
    text = text.lower()
    text = re.sub(r'[^a-z0-9\s]', '', text)
    return text

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [preprocess_text(line.strip()) for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segments(user_query, segments, top_k=5):
    try:
        # Preprocess and lowercase the query for better matching
        lower_query = preprocess_text(user_query)
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        # Find the indices of the top-k most similar segments
        top_k_indices = similarities.topk(top_k).indices
        # Return the most relevant segments
        return [segments[idx] for idx in top_k_indices]
    except Exception as e:
        print(f"Error in finding relevant segments: {e}")
        return []


def generate_response(user_query, relevant_segments):
    """
    Generate a response providing song recommendations based on mood.
    """
    try:
        system_message = "You are a music recommendation chatbot designed to suggest songs based on mood, catering to Gen Z's taste in music."
        user_message = f"User query: {user_query}. Recommended songs: {', '.join(relevant_segments)}"
        messages = [
            {"role": "system", "content": system_message},
            {"role": "user", "content": user_message}
        ]
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=150,
            temperature=0.7,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        return response['choices'][0]['message']['content'].strip()
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to the Song Recommendation Bot! Ask me for song recommendations based on your mood."
    relevant_segments = find_relevant_segments(question, segments)
    if not relevant_segments:
        return "Could not find specific song recommendations. Please refine your question."
    response = generate_response(question, relevant_segments)
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🎶: Welcome to SongSeeker!
## I am here to help you find the perfect songs based on your mood!
"""
topics = """
### Feel free to ask me for song recommendations for:
- Sad mood
- Happy mood
- Angry mood
- Workout
- Chilling
- Study
- Eating a meal
- Nostalgic
- Self care
"""

# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(css="custom.css") as demo:
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Your question", placeholder="What's your mood or activity?")
            answer = gr.Textbox(label="Song Recommendations", placeholder="Your recommendations will appear here...", interactive=False, lines=10)
            submit_button = gr.Button("Submit")
            submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)