File size: 4,884 Bytes
1cc6224
 
 
 
0fef757
1cc6224
19f92db
1cc6224
 
3e6a31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc6224
 
0fef757
1cc6224
 
 
3e6a31d
 
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
3e6a31d
 
 
 
19f92db
3e6a31d
 
19f92db
 
 
 
 
 
1cc6224
 
3e6a31d
 
19f92db
3e6a31d
1cc6224
 
 
19f92db
1cc6224
 
 
19f92db
1cc6224
19f92db
1cc6224
19f92db
 
 
 
 
 
1cc6224
 
 
c57c340
19f92db
1cc6224
 
19f92db
 
 
 
 
 
 
 
 
 
1cc6224
 
19f92db
3e6a31d
 
 
 
 
 
19f92db
 
3e6a31d
 
1cc6224
3e6a31d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing song recommendation details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""
def generate_response(user_query, relevant_segment):
    """
    Generate a response providing song recommendations based on mood.
    """
    try:
        system_message = "You are a music recommendation chatbot designed to suggest songs based on mood, catering to Gen Z's taste in music."
        user_message = f"User query: {user_query}. Recommended songs: {relevant_segment}"
        messages = [
            {"role": "system", "content": system_message},
            {"role": "user", "content": user_message}
        ]
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=150,
            temperature=0.7,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        return response['choices'][0]['message']['content'].strip()
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"
def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to the Song Recommendation Bot! Ask me for song recommendations based on your mood."
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific song recommendations. Please refine your question."
    response = generate_response(question, relevant_segment)
    return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🎶: Welcome to the Song Recommendation Bot!
## I am here to help you find the perfect songs based on your mood, specially curated for Gen Z tastes.
"""
topics = """
### Feel free to ask me for song recommendations for:
- Sad mood
- Happy mood
- Angry mood
- Workout
- Chilling
- Study
- Eating a meal
- Nostalgic
- Self care
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks() as demo:
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Your question", placeholder="What's your mood or activity?")
            answer = gr.Textbox(label="Song Recommendations", placeholder="Your recommendations will appear here...", interactive=False, lines=10)
            submit_button = gr.Button("Submit")
            submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)