Spaces:
Runtime error
Runtime error
File size: 10,340 Bytes
53f2004 88589b6 854ff31 5df9efb f317a58 7da0b4e f317a58 710c4d0 f317a58 9a556cf f317a58 88589b6 c5ebcfd 88589b6 83e85d6 88589b6 b5b1417 83e85d6 53f2004 b5b1417 53f2004 b5b1417 53f2004 b5b1417 53f2004 b5b1417 53f2004 b5b1417 53f2004 b5b1417 53f2004 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import streamlit as st
import pandas as pd
import yfinance as yf
import base64
import io
import os
from datetime import datetime, timedelta
from PIL import Image
from plotly import graph_objs as go
from datetime import date
from model.lstm_model import BiLSTM
import torch
st.set_page_config(layout='wide', initial_sidebar_state='expanded')
st.set_option('deprecation.showPyplotGlobalUse', False)
st.title('ML Wall Street')
# st.image('images/img.png')
# Разделение страницы на две колонки
left_column, right_column = st.columns([2, 1])
with left_column:
st.image("images/logo.jpg", width=700)
# В правой колонке размещаем текстовое описание
with right_column:
with right_column:
st.markdown("""
<div style="font-size: 24px; font-weight: bold;">Приложение по оценке фондового рынка:</div>
<div style="font-size: 20px;">индексы DJI, S&P500, MOEX, SSE / акции 'blue chips'/ Bitcoin</div>
<div style="font-size: 20px;">с применением ML & BiLSTM моделей</div>
""", unsafe_allow_html=True)
# Загрузка весов модели (выполняется только при первом запуске)
@st.cache_data
def load_model_weights():
return torch.load('model/model_weights.pth')
# Сохранение весов модели в сессионном состоянии
if 'model_weights' not in st.session_state:
st.session_state.model_weights = load_model_weights()
# # Функция для получения данных о ценах акций
# @st.cache_data(allow_output_mutation=True)
# def get_stock_data(start_date, end_date):
# dow_tickers = ['UNH', 'MSFT', 'GS', 'HD', 'AMGN', 'MCD', 'CAT', 'CRM', 'V', 'BA', 'HON', 'TRV', 'AAPL', 'AXP', 'JPM', 'IBM', 'JNJ', 'WMT', 'PG', 'CVX', 'MRK', 'MMM', 'NKE', 'DIS', 'KO', 'DOW', 'CSCO', 'INTC', 'VZ', 'WBA']
# # Определение переменных last_update_key и data_key в области видимости
# last_update_key = 'last_stock_update'
# data_key = 'stock_data'
# # Проверка, прошло ли более 12 часов с последнего обновления данных
# if last_update_key not in st.session_state or (datetime.now() - st.session_state[last_update_key]).total_seconds() > 43200:
# dow_data = yf.download(dow_tickers, start=start_date, end=end_date)
# # Сохранение данных в сессионном состоянии
# st.session_state[data_key] = dow_data
# st.session_state[last_update_key] = datetime.now()
# else:
# # Если данные уже в сессионном состоянии, возвращаем их
# dow_data = st.session_state[data_key]
# return dow_data
# # Функция для получения данных по индексу
# @st.cache_data(allow_output_mutation=True)
# def load_data(index_symbol, start_date, end_date):
# # Определение переменных last_update_key и data_key в области видимости
# last_update_key = f'last_{index_symbol.lower()}_update'
# data_key = f'{index_symbol.lower()}_data'
# # Проверка, прошло ли более 12 часов с последнего обновления данных
# if last_update_key not in st.session_state or (datetime.now() - st.session_state[last_update_key]).total_seconds() > 43200:
# df = yf.download(index_symbol, start=start_date, end=end_date)
# df.reset_index(inplace=True)
# # Сохранение данных в сессионном состоянии
# st.session_state[data_key] = df
# st.session_state[last_update_key] = datetime.now()
# else:
# # Если данные уже в сессионном состоянии, возвращаем их
# df = st.session_state[data_key]
# return df
# # Пример использования для разных индексов
# start_date = "2021-01-01"
# end_date = date.today().strftime("%Y-%m-%d")
# sse_data = load_data('000001.SS', start_date, end_date)
# moex_data = load_data('IMOEX.ME', start_date, end_date)
# dji_data = load_data('^DJI', start_date, end_date)
# sp500_data = load_data('^GSPC', start_date, end_date)
# # Получение данных о ценах акций
# data = get_stock_data(start_date, end_date)
# latest_date = data.index[-1].strftime('%Y-%m-%d')
# @st.cache_data
# Функция для получения данных о ценах акций
def get_stock_data():
dow_tickers = ['UNH', 'MSFT', 'GS', 'HD', 'AMGN', 'MCD', 'CAT', 'CRM', 'V', 'BA', 'HON', 'TRV', 'AAPL', 'AXP', 'JPM', 'IBM', 'JNJ', 'WMT', 'PG', 'CVX', 'MRK', 'MMM', 'NKE', 'DIS', 'KO', 'DOW', 'CSCO', 'INTC', 'VZ', 'WBA']
start_date = (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d')
end_date = datetime.now().strftime('%Y-%m-%d')
dow_data = yf.download(dow_tickers, start=start_date, end=end_date)
return dow_data
data = get_stock_data()
latest_date = data.index[-1].strftime('%Y-%m-%d')
data = data.loc[latest_date, 'Close'].reset_index()
data.columns = ['Ticker', 'Close']
data['Close'] = data['Close'].round(2)
st.markdown(f"<h3 style='text-align: center;'>Цены актуальны на последнюю дату закрытия торгов {latest_date}</h3>", unsafe_allow_html=True)
col3, col1, col2 = st.columns([0.2, 5.3, 1.8])
with col2:
def image_to_base64(img_path, output_size=(64, 64)):
if os.path.exists(img_path):
with Image.open(img_path) as img:
img = img.resize(output_size)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
return ""
if 'Logo' not in data.columns:
output_dir = 'downloaded_logos'
data['Logo'] = data['Ticker'].apply(lambda name: os.path.join(output_dir, f'{name}.png'))
# Convert image paths to Base64
data["Logo"] = data["Logo"].apply(image_to_base64)
image_column = st.column_config.ImageColumn(label="")
ticker_column = st.column_config.TextColumn(label="Ticker 💬", help="📍**Тикеры компаний Индекса Dow Jones**")
price_column = st.column_config.TextColumn(label=f"Close 💬", help="📍**Цена за последний день (в USD)**")
data.reset_index(drop=True, inplace=True)
data.index = data.index + 1
data = data[['Logo', 'Ticker', 'Close']]
st.write('')
st.write('')
st.markdown('**Компании Индекса Dow Jones**')
st.dataframe(data, height=1088, column_config={"Logo": image_column, "Ticker":ticker_column, 'Close':price_column})
with col1:
START = "1920-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
# @st.cache_data
def load_data(ticker):
data = yf.download(ticker, START, TODAY)
data.reset_index(inplace=True)
return data
def plot_raw_data(data, text):
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name="Цена закрытия"))
fig.update_layout(title_text=text, xaxis_rangeslider_visible=True)
fig.update_traces(showlegend=True)
st.plotly_chart(fig)
data = load_data('^DJI')
last_DJI = data['Close'].iloc[-1]
diff_DJI = data['Close'].iloc[-1] - data['Close'].iloc[-2]
pr_DJI = 100 * diff_DJI / last_DJI
text_DJI = f'🇺🇸 Dow Jones Industrial Average (^DJI) \
<span style="font-size: 1.5em;">{last_DJI:.2f}</span> <span style="font-size: 1em; color: crimson;">{diff_DJI:.2f}</span><span style="font-size: 1em; color: crimson;">({pr_DJI:.2f}%)</span>' \
'<br><span style="font-size: 0.7em; color: grey;">DJI - DJI Real Time Price. Currency in USD</span>'
plot_raw_data(data, text_DJI)
check1 = st.checkbox("Исторические данные Dow Jones Industrial Average")
if check1:
st.write(data)
data_500 = load_data('^GSPC')
last_500 = data_500['Close'].iloc[-1]
diff_500 = data_500['Close'].iloc[-1] - data_500['Close'].iloc[-2]
pr_500 = 100 * diff_500 / last_500
text_500 = f'🇺🇸 S&P 500 (^GSPC) \
<span style="font-size: 1.5em;">{last_500:.2f}</span> <span style="font-size: 1em; color: crimson;">{diff_500:.2f}</span><span style="font-size: 1em; color: crimson;">({pr_500:.2f}%)</span>' \
'<br><span style="font-size: 0.7em; color: grey;">SNP - SNP Real Time Price. Currency in USD</span>'
plot_raw_data(data_500, text_500)
check4 = st.checkbox("S&P 500")
if check4:
st.write(data_500)
data_SSE = load_data('000001.SS')
last_SSE = data_SSE['Close'].iloc[-1]
diff_SSE = data_SSE['Close'].iloc[-1] - data_SSE['Close'].iloc[-2]
pr_SSE = 100 * diff_SSE / last_SSE
text_SSE = f'🇨🇳 SSE Composite Index (000001.SS) \
<span style="font-size: 1.5em;">{last_SSE:.2f}</span> <span style="font-size: 1em; color: crimson;">{diff_SSE:.2f}</span><span style="font-size: 1em; color: crimson;">({pr_SSE:.2f}%)</span>' \
'<br><span style="font-size: 0.7em; color: grey;">Shanghai - Shanghai Delayed Price. Currency in CNY</span>'
plot_raw_data(data_SSE, text_SSE)
check2 = st.checkbox("Исторические данные SSE Composite Index")
if check2:
st.write(data_SSE)
data_IMOEX = load_data('IMOEX.ME')
last_IMOEX = data_IMOEX['Close'].iloc[-1]
diff_IMOEX = data_IMOEX['Close'].iloc[-1] - data_IMOEX['Close'].iloc[-2]
pr_IMOEX = 100 * diff_IMOEX / last_IMOEX
text_IMOEX= f'🇷🇺 MOEX Russia Index (IMOEX.ME) \
<span style="font-size: 1.5em;">{last_IMOEX:.2f}</span> <span style="font-size: 1em; color: crimson;">{diff_IMOEX:.2f}</span><span style="font-size: 1em; color: crimson;">({pr_IMOEX:.2f}%)</span>' \
'<br><span style="font-size: 0.7em; color: grey;">MCX - MCX Real Time Price. Currency in RUB</span>'
plot_raw_data(data_IMOEX, text_IMOEX)
check3 = st.checkbox("Исторические данные MOEX Russia Index")
if check3:
st.write(data_IMOEX)
|