import PIL from fastapi import FastAPI, File, UploadFile from pydantic import BaseModel from utils.model_func import class_id_to_label, load_model, transform_image model = None app = FastAPI() # Create class of answer: only class name class ImageClass(BaseModel): prediction: str # Load model at startup @app.on_event("startup") def startup_event(): global model model = load_model() @app.get('/') def return_info(): return 'Hello FastAPI' @app.post('/classify') def classify(file: UploadFile = File(...)): image = PIL.Image.open(file.file) adapted_image = transform_image(image) pred_index = model(adapted_image.unsqueeze(0)).detach().cpu().numpy().argmax() imagenet_class = class_id_to_label(pred_index) response = ImageClass( prediction=imagenet_class ) return response