|
import PIL |
|
from fastapi import FastAPI, File, UploadFile |
|
from pydantic import BaseModel |
|
from utils.model_func import class_id_to_label, load_model, transform_image |
|
|
|
model = None |
|
app = FastAPI() |
|
|
|
|
|
|
|
class ImageClass(BaseModel): |
|
prediction: str |
|
|
|
|
|
@app.on_event("startup") |
|
def startup_event(): |
|
global model |
|
model = load_model() |
|
|
|
@app.get('/') |
|
def return_info(): |
|
return 'Hello FastAPI' |
|
|
|
|
|
@app.post('/classify') |
|
def classify(file: UploadFile = File(...)): |
|
image = PIL.Image.open(file.file) |
|
adapted_image = transform_image(image) |
|
pred_index = model(adapted_image.unsqueeze(0)).detach().cpu().numpy().argmax() |
|
imagenet_class = class_id_to_label(pred_index) |
|
response = ImageClass( |
|
prediction=imagenet_class |
|
) |
|
|
|
return response |