Spaces:
Build error
Build error
File size: 4,245 Bytes
20ffb87 e5f4906 20ffb87 e5f4906 20ffb87 e5f4906 20ffb87 e5f4906 20ffb87 e5f4906 20ffb87 e5f4906 20ffb87 e5f4906 20ffb87 e5f4906 20ffb87 e502daa 20ffb87 e5f4906 20ffb87 e5f4906 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
import numpy as np
from torchvision import transforms
import torch
from helpers import *
import sys
import csv
from monoscene.monoscene import MonoScene
csv.field_size_limit(sys.maxsize)
torch.set_grad_enabled(False)
# pipeline = pipeline(model="anhquancao/monoscene_kitti")
# model = AutoModel.from_pretrained(
# "anhquancao/monoscene_kitti", trust_remote_code=True, revision='bf033f87c2a86b60903ab811b790a1532c1ae313'
# )#.cuda()
model = MonoScene.load_from_checkpoint(
"monoscene_nyu.ckpt",
dataset="NYU",
feature=200,
project_scale=1,
full_scene_size=(60, 36, 60),
)
img_W, img_H = 640, 480
def predict(img):
img = np.array(img, dtype=np.float32, copy=False) / 255.0
normalize_rgb = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
img = normalize_rgb(img)
batch = get_projections(img_W, img_H)
batch["img"] = img
for k in batch:
batch[k] = batch[k].unsqueeze(0) # .cuda()
pred = model(batch).squeeze()
y_pred = torch.softmax(pred["ssc_logit"], dim=1).detach().cpu().numpy()
cam_pose = np.asarray([[ 9.6699458e-01, 4.2662762e-02, 2.5120059e-01, 0.0000000e+00],
[-2.5147417e-01, 1.0867463e-03, 9.6786356e-01, 0.0000000e+00],
[ 4.1018680e-02, -9.9908894e-01, 1.1779292e-02, 1.1794727e+00],
[ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00]])
vox_origin = np.array([-1.54591799, 0.8907361 , -0.05 ])
fig = draw(y_pred.squeeze(),cam_pose, vox_origin)
return fig
description = """
MonoScene Demo on SemanticKITTI Validation Set (Sequence 08), which uses the <b>camera parameters of Sequence 08</b>.
Due to the <b>CPU-only</b> inference, it might take up to 20s to predict a scene. \n
The output is <b>downsampled by 2</b> for faster rendering. <b>Darker</b> colors represent the <b>scenery outside the Field of View</b>, i.e. not visible on the image.
<center>
<a href="https://astra-vision.github.io/MonoScene/">
<img style="display:inline" alt="Project page" src="https://img.shields.io/badge/Project%20Page-MonoScene-red">
</a>
<a href="https://arxiv.org/abs/2112.00726"><img style="display:inline" src="https://img.shields.io/badge/arXiv%20%2B%20supp-2112.00726-purple"></a>
<a href="https://github.com/cv-rits/MonoScene"><img style="display:inline" src="https://img.shields.io/github/stars/cv-rits/MonoScene?style=social"></a>
</center>
"""
title = "MonoScene: Monocular 3D Semantic Scene Completion"
article = """
<center>
We also released a <b>smaller</b> MonoScene model (Half resolution - w/o 3D CRP) at: <a href="https://huggingface.co/spaces/CVPR/monoscene_lite">https://huggingface.co/spaces/CVPR/monoscene_lite</a>
<img src='https://visitor-badge.glitch.me/badge?page_id=anhquancao.MonoScene&left_color=darkmagenta&right_color=purple' alt='visitor badge'>
</center>
"""
examples = [
'images/08/3-1.jpg',
'images/08/001385.jpg',
'images/08/000295.jpg',
'images/08/002505.jpg',
'images/08/000085.jpg',
'images/08/000290.jpg',
'images/08/000465.jpg',
'images/08/000790.jpg',
'images/08/001005.jpg',
'images/08/001380.jpg',
'images/08/001530.jpg',
'images/08/002360.jpg',
'images/08/004059.jpg',
'images/08/003149.jpg',
'images/08/001446.jpg',
'images/08/000010.jpg',
'images/08/001122.jpg',
'images/08/003533.jpg',
'images/08/003365.jpg',
'images/08/002944.jpg',
'images/08/000822.jpg',
'images/08/000103.jpg',
'images/08/002716.jpg',
'images/08/000187.jpg',
'images/08/002128.jpg',
'images/08/000511.jpg',
'images/08/000618.jpg',
'images/08/002010.jpg',
'images/08/000234.jpg',
'images/08/001842.jpg',
'images/08/001687.jpg',
'images/08/003929.jpg',
'images/08/002272.jpg',
]
demo = gr.Interface(
predict,
gr.Image(shape=(1220, 370)),
gr.Plot(),
article=article,
title=title,
enable_queue=True,
cache_examples=False,
live=False,
examples=examples,
description=description)
demo.launch(enable_queue=True, debug=False)
|