Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
-
import os
|
2 |
import streamlit as st
|
3 |
import PyPDF2
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
st.set_page_config(page_title="Research Position Application Generator", page_icon="🔬")
|
8 |
|
9 |
-
# Set
|
10 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"]
|
11 |
|
12 |
# Initialize LLM
|
@@ -15,145 +13,66 @@ llm = HuggingFaceHub(
|
|
15 |
model_kwargs={"temperature": 0.5}
|
16 |
)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
Returns:
|
26 |
-
str: Extracted text from the PDF
|
27 |
-
"""
|
28 |
-
try:
|
29 |
-
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
30 |
-
text = ""
|
31 |
-
for page in pdf_reader.pages:
|
32 |
-
text += page.extract_text()
|
33 |
-
return text
|
34 |
-
except Exception as e:
|
35 |
-
st.error(f"Error extracting PDF text: {e}")
|
36 |
-
return ""
|
37 |
-
|
38 |
-
def generate_cold_email(position_details, cv_text):
|
39 |
-
"""
|
40 |
-
Generate a professional cold email using the LLM.
|
41 |
-
|
42 |
-
Args:
|
43 |
-
position_details (dict): Details about the research position
|
44 |
-
cv_text (str): Text extracted from the CV/resume
|
45 |
-
|
46 |
-
Returns:
|
47 |
-
str: Generated cold email
|
48 |
-
"""
|
49 |
-
prompt = f"""Write a professional and concise cold email to Professor {position_details['professor_name']}
|
50 |
-
at {position_details['university']} about the research position in {position_details['research_focus']}.
|
51 |
-
The email should:
|
52 |
-
1. Demonstrate knowledge of the professor's research
|
53 |
-
2. Highlight relevant experience from the CV
|
54 |
-
3. Express genuine interest in the position
|
55 |
-
4. Be no more than 250 words
|
56 |
-
|
57 |
-
CV Details:
|
58 |
-
{cv_text}
|
59 |
-
|
60 |
-
Research Position Details:
|
61 |
-
Research Focus: {position_details['research_focus']}
|
62 |
-
Professor: {position_details['professor_name']}
|
63 |
-
University: {position_details['university']}
|
64 |
-
"""
|
65 |
-
|
66 |
-
return llm.invoke(prompt)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
Generate a formal cover letter using the LLM.
|
71 |
-
|
72 |
-
Args:
|
73 |
-
position_details (dict): Details about the research position
|
74 |
-
cv_text (str): Text extracted from the CV/resume
|
75 |
-
|
76 |
-
Returns:
|
77 |
-
str: Generated cover letter
|
78 |
-
"""
|
79 |
-
prompt = f"""Write a professional and formal cover letter for a research position with the following details:
|
80 |
-
Research Focus: {position_details['research_focus']}
|
81 |
-
University: {position_details['university']}
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
4. Demonstrate alignment with the research position
|
88 |
-
5. Be 300-400 words long
|
89 |
-
6. Include a strong closing paragraph
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
return llm.invoke(prompt)
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
uploaded_cv = st.sidebar.file_uploader("Choose a PDF file", type="pdf")
|
112 |
-
|
113 |
-
# Generate button
|
114 |
-
if st.sidebar.button("Generate Documents"):
|
115 |
-
# Validate inputs
|
116 |
-
if not (professor_name and university and research_focus and uploaded_cv):
|
117 |
-
st.error("Please fill in all details and upload a CV")
|
118 |
-
return
|
119 |
|
120 |
-
|
121 |
-
cv_text = extract_text_from_pdf(uploaded_cv)
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
|
126 |
-
'
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
with st.spinner('Generating documents...'):
|
132 |
-
cold_email = generate_cold_email(position_details, cv_text)
|
133 |
-
cover_letter = generate_cover_letter(position_details, cv_text)
|
134 |
|
135 |
# Display results
|
136 |
-
st.
|
137 |
-
|
138 |
-
# Cold Email
|
139 |
-
st.subheader("Cold Email")
|
140 |
-
st.write(cold_email)
|
141 |
-
st.download_button(
|
142 |
-
label="Download Cold Email",
|
143 |
-
data=cold_email,
|
144 |
-
file_name="cold_email.txt",
|
145 |
-
mime="text/plain"
|
146 |
-
)
|
147 |
|
148 |
-
|
149 |
-
st.
|
150 |
-
|
151 |
-
st.
|
152 |
-
label="Download Cover Letter",
|
153 |
-
data=cover_letter,
|
154 |
-
file_name="cover_letter.txt",
|
155 |
-
mime="text/plain"
|
156 |
-
)
|
157 |
-
|
158 |
-
if __name__ == "__main__":
|
159 |
-
main()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import PyPDF2
|
3 |
+
import os
|
4 |
+
from langchain.llms import HuggingFaceHub
|
5 |
+
from langchain.prompts import PromptTemplate
|
|
|
6 |
|
7 |
+
# Set up API token
|
8 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"]
|
9 |
|
10 |
# Initialize LLM
|
|
|
13 |
model_kwargs={"temperature": 0.5}
|
14 |
)
|
15 |
|
16 |
+
# Function to extract text from PDF
|
17 |
+
def extract_text_from_pdf(pdf_file):
|
18 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
19 |
+
text = ""
|
20 |
+
for page in pdf_reader.pages:
|
21 |
+
text += page.extract_text() + "\n"
|
22 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Streamlit UI
|
25 |
+
st.title("Cold Email & Cover Letter Generator for Professors")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# User inputs
|
28 |
+
position_details = st.text_area("Enter details about the research position:",
|
29 |
+
"e.g., Professor's name, research focus, university, lab details, etc.")
|
30 |
+
resume_file = st.file_uploader("Upload your CV/Resume (PDF)", type=["pdf"])
|
|
|
|
|
|
|
31 |
|
32 |
+
if st.button("Generate Cold Email & Cover Letter"):
|
33 |
+
if position_details and resume_file:
|
34 |
+
# Extract text from the uploaded PDF
|
35 |
+
resume_text = extract_text_from_pdf(resume_file)
|
|
|
36 |
|
37 |
+
# Define prompt for cold email
|
38 |
+
email_prompt = PromptTemplate.from_template(
|
39 |
+
"""
|
40 |
+
Based on the following details of a research position and a student's CV, generate a professional cold email:
|
41 |
+
|
42 |
+
Research Position Details:
|
43 |
+
{position}
|
44 |
+
|
45 |
+
Student's CV:
|
46 |
+
{resume}
|
47 |
+
|
48 |
+
The email should be formal, concise, and engaging, expressing interest in the position while highlighting relevant skills.
|
49 |
+
"""
|
50 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
email_content = llm(email_prompt.format(position=position_details, resume=resume_text))
|
|
|
53 |
|
54 |
+
# Define prompt for cover letter
|
55 |
+
cover_prompt = PromptTemplate.from_template(
|
56 |
+
"""
|
57 |
+
Generate a professional cover letter based on the following research position details and a student's CV:
|
58 |
+
|
59 |
+
Research Position Details:
|
60 |
+
{position}
|
61 |
+
|
62 |
+
Student's CV:
|
63 |
+
{resume}
|
64 |
+
|
65 |
+
The cover letter should be well-structured, highlighting the student's background, relevant skills, research interests, and motivation for applying.
|
66 |
+
"""
|
67 |
+
)
|
68 |
|
69 |
+
cover_content = llm(cover_prompt.format(position=position_details, resume=resume_text))
|
|
|
|
|
|
|
70 |
|
71 |
# Display results
|
72 |
+
st.subheader("Generated Cold Email")
|
73 |
+
st.write(email_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
st.subheader("Generated Cover Letter")
|
76 |
+
st.write(cover_content)
|
77 |
+
else:
|
78 |
+
st.warning("Please provide both the position details and upload a CV.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|