Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import io
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
from googleapiclient.discovery import build
|
7 |
+
|
8 |
+
# API and Model Setup
|
9 |
+
HF_header = os.getenv('header')
|
10 |
+
headers = {"Authorization": HF_header}
|
11 |
+
YOUTUBE_DATA_API = os.getenv('YOUTUBE_API') # replace this with your own YouTube Data API key
|
12 |
+
youtube = build('youtube', 'v3', developerKey=YOUTUBE_DATA_API)
|
13 |
+
mealdb_base_url = os.getenv('mealdb_base_api')
|
14 |
+
|
15 |
+
# Function to convert image to base64
|
16 |
+
def image_to_base64(image):
|
17 |
+
buffered = io.BytesIO()
|
18 |
+
image.save(buffered, format="JPEG")
|
19 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
20 |
+
|
21 |
+
# Function to perform inference on the image using Hugging Face model
|
22 |
+
def perform_inference(image):
|
23 |
+
buffered = io.BytesIO()
|
24 |
+
image.save(buffered, format="JPEG")
|
25 |
+
data = buffered.getvalue()
|
26 |
+
model_url = "https://api-inference.huggingface.co/models/juliensimon/autotrain-food101-1471154053"
|
27 |
+
response = requests.post(model_url, headers=headers, data=data)
|
28 |
+
result = response.json()
|
29 |
+
return result[0]['label']
|
30 |
+
|
31 |
+
# Function to search YouTube videos based on a query
|
32 |
+
def search_youtube_videos(query):
|
33 |
+
search_params = {
|
34 |
+
'q': query + " recipe",
|
35 |
+
'part': 'snippet',
|
36 |
+
'maxResults': 5,
|
37 |
+
'type': 'video',
|
38 |
+
}
|
39 |
+
search_response = youtube.search().list(**search_params).execute()
|
40 |
+
video_ids = [item['id']['videoId'] for item in search_response['items']]
|
41 |
+
return [f"https://www.youtube.com/embed/{video_id}" for video_id in video_ids]
|
42 |
+
|
43 |
+
# Function to get recipe details from TheMealDB
|
44 |
+
def get_recipe_details(query):
|
45 |
+
response = requests.get(f"{mealdb_base_url}search.php?s={query}")
|
46 |
+
data = response.json()
|
47 |
+
meals = data.get('meals', [])
|
48 |
+
if meals:
|
49 |
+
meal_id = meals[0]['idMeal']
|
50 |
+
details_response = requests.get(f"{mealdb_base_url}lookup.php?i={meal_id}")
|
51 |
+
details_data = details_response.json()
|
52 |
+
recipe = details_data['meals'][0]
|
53 |
+
ingredients = "\n".join([f"{recipe[f'strIngredient{i}']}: {recipe[f'strMeasure{i}']}" for i in range(1, 21) if recipe[f'strIngredient{i}']])
|
54 |
+
return f"{recipe['strMeal']} -\n\nSteps:\n{recipe['strInstructions']}\n\nIngredients:\n{ingredients}"
|
55 |
+
return "Recipe details not found."
|
56 |
+
|
57 |
+
# Gradio interface function that handles image uploads and processes the data
|
58 |
+
|
59 |
+
def gradio_interface(image):
|
60 |
+
dish_name = perform_inference(image)
|
61 |
+
youtube_links = search_youtube_videos(dish_name)
|
62 |
+
recipe_details = get_recipe_details(dish_name)
|
63 |
+
# Generate HTML content for embedding videos
|
64 |
+
youtube_html = generate_embed_html(youtube_links)
|
65 |
+
return dish_name, youtube_html, recipe_details
|
66 |
+
|
67 |
+
iface = gr.Interface(
|
68 |
+
fn=gradio_interface,
|
69 |
+
inputs=gr.Image(type="pil", label="Upload an Image"),
|
70 |
+
outputs=[
|
71 |
+
gr.Textbox(label="Predicted Dish"),
|
72 |
+
gr.HTML(label="YouTube Recipe Videos"),
|
73 |
+
gr.Textbox(label="Recipe Details")
|
74 |
+
],
|
75 |
+
title="Dish Prediction, Recipe Videos, and Recipe Details",
|
76 |
+
description="Upload an image of food, and the app will predict the dish, provide YouTube links for recipes, and fetch detailed recipe instructions."
|
77 |
+
)
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
iface.launch()
|
81 |
+
|
82 |
+
|
83 |
+
def gradio_interface(image):
|
84 |
+
dish_name = perform_inference(image)
|
85 |
+
return dish_name, ""
|
86 |
+
|
87 |
+
def show_recipe(dish_name):
|
88 |
+
if dish_name:
|
89 |
+
return get_recipe_details(dish_name)
|
90 |
+
return "No dish predicted. Please upload an image and predict the dish first.", ""
|
91 |
+
|
92 |
+
def show_videos(dish_name):
|
93 |
+
if dish_name:
|
94 |
+
video_links = search_youtube_videos(dish_name)
|
95 |
+
return "", generate_embed_html(video_links)
|
96 |
+
return "", "No dish predicted. Please upload an image and predict the dish first."
|
97 |
+
|
98 |
+
iface = gr.Blocks()
|
99 |
+
|