Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
os.system("pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt221/download.html")
|
3 |
import shutil
|
|
|
4 |
|
5 |
from huggingface_hub import snapshot_download
|
6 |
|
@@ -103,6 +104,22 @@ def save_video_with_audio(video_path, audio_path, save_path):
|
|
103 |
audio_clip.close()
|
104 |
return save_path
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
# Global parameters
|
107 |
model_name = "pretrained_models/SkyReels-A1-5B/"
|
108 |
siglip_name = "pretrained_models/SkyReels-A1-5B/siglip-so400m-patch14-384"
|
@@ -204,9 +221,13 @@ def process_image_audio(image_path, audio_path, guidance_scale=3.0, steps=10, pr
|
|
204 |
out_frames = processor.preprocess_lmk3d_from_coef(
|
205 |
source_outputs, source_tform, image_original.shape, driving_outputs
|
206 |
)
|
207 |
-
out_frames =
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
rescale_motions = np.zeros_like(image)[np.newaxis, :].repeat(
|
210 |
for ii in range(rescale_motions.shape[0]):
|
211 |
rescale_motions[ii][y1:y1+face_h, x1:x1+face_w] = out_frames[ii]
|
212 |
|
@@ -222,8 +243,8 @@ def process_image_audio(image_path, audio_path, guidance_scale=3.0, steps=10, pr
|
|
222 |
first_motion[y1:y1+face_h, x1:x1+face_w] = ref_img
|
223 |
first_motion = first_motion[np.newaxis, :]
|
224 |
|
225 |
-
motions = np.concatenate([first_motion, rescale_motions])
|
226 |
-
input_video = motions[:max_frame_num]
|
227 |
|
228 |
# Face alignment
|
229 |
face_helper.clean_all()
|
@@ -234,29 +255,44 @@ def process_image_audio(image_path, audio_path, guidance_scale=3.0, steps=10, pr
|
|
234 |
image_face = align_face[:, :, ::-1]
|
235 |
|
236 |
# Prepare input video
|
237 |
-
input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
|
238 |
-
input_video = input_video / 255
|
239 |
|
240 |
progress(0.6, desc="Generating animation (this may take a while)...")
|
241 |
# Generate video
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
progress(0.8, desc="Creating output video...")
|
261 |
# Export video
|
262 |
export_to_video(out_samples, temp_video_path, fps=12)
|
|
|
1 |
import os
|
2 |
os.system("pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt221/download.html")
|
3 |
import shutil
|
4 |
+
import math
|
5 |
|
6 |
from huggingface_hub import snapshot_download
|
7 |
|
|
|
104 |
audio_clip.close()
|
105 |
return save_path
|
106 |
|
107 |
+
def pad_video(driving_frames, fps=25):
|
108 |
+
video_length = len(driving_frames)
|
109 |
+
|
110 |
+
duration = video_length / fps
|
111 |
+
target_times = np.arange(0, duration, 1/12)
|
112 |
+
frame_indices = (target_times * fps).astype(np.int32)
|
113 |
+
|
114 |
+
frame_indices = frame_indices[frame_indices < video_length]
|
115 |
+
new_driving_frames = []
|
116 |
+
for idx in frame_indices:
|
117 |
+
new_driving_frames.append(driving_frames[idx])
|
118 |
+
|
119 |
+
pad_length = math.ceil(len(new_driving_frames) / 48) * 48 - len(new_driving_frames)
|
120 |
+
new_driving_frames.extend([new_driving_frames[-1]]*pad_length)
|
121 |
+
return new_driving_frames, pad_length
|
122 |
+
|
123 |
# Global parameters
|
124 |
model_name = "pretrained_models/SkyReels-A1-5B/"
|
125 |
siglip_name = "pretrained_models/SkyReels-A1-5B/siglip-so400m-patch14-384"
|
|
|
221 |
out_frames = processor.preprocess_lmk3d_from_coef(
|
222 |
source_outputs, source_tform, image_original.shape, driving_outputs
|
223 |
)
|
224 |
+
out_frames, pad_length = pad_video(out_frames)
|
225 |
+
print(len(out_frames), pad_length)
|
226 |
+
|
227 |
+
|
228 |
+
# out_frames = parse_video(out_frames, max_frame_num)
|
229 |
|
230 |
+
rescale_motions = np.zeros_like(image)[np.newaxis, :].repeat(len(out_frames), axis=0)
|
231 |
for ii in range(rescale_motions.shape[0]):
|
232 |
rescale_motions[ii][y1:y1+face_h, x1:x1+face_w] = out_frames[ii]
|
233 |
|
|
|
243 |
first_motion[y1:y1+face_h, x1:x1+face_w] = ref_img
|
244 |
first_motion = first_motion[np.newaxis, :]
|
245 |
|
246 |
+
# motions = np.concatenate([first_motion, rescale_motions])
|
247 |
+
# input_video = motions[:max_frame_num]
|
248 |
|
249 |
# Face alignment
|
250 |
face_helper.clean_all()
|
|
|
255 |
image_face = align_face[:, :, ::-1]
|
256 |
|
257 |
# Prepare input video
|
258 |
+
# input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
|
259 |
+
# input_video = input_video / 255
|
260 |
|
261 |
progress(0.6, desc="Generating animation (this may take a while)...")
|
262 |
# Generate video
|
263 |
+
out_samples = []
|
264 |
+
for i in range(0, len(rescale_motions), 48):
|
265 |
+
motions = np.concatenate([first_motion, rescale_motions[i:i+48]])
|
266 |
+
input_video = motions
|
267 |
+
input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
|
268 |
+
input_video = input_video / 255
|
269 |
+
|
270 |
+
with torch.no_grad():
|
271 |
+
sample = pipe(
|
272 |
+
image=image,
|
273 |
+
image_face=image_face,
|
274 |
+
control_video=input_video,
|
275 |
+
prompt="",
|
276 |
+
negative_prompt="",
|
277 |
+
height=480,
|
278 |
+
width=720,
|
279 |
+
num_frames=49,
|
280 |
+
# generator=generator,
|
281 |
+
guidance_scale=guidance_scale,
|
282 |
+
num_inference_steps=steps,
|
283 |
+
)
|
284 |
+
if i == 0:
|
285 |
+
out_samples.extend(sample.frames[0])
|
286 |
+
else:
|
287 |
+
out_samples.extend(sample.frames[0][1:])
|
288 |
+
# out_samples = sample.frames[0]
|
289 |
+
|
290 |
+
# out_samples = out_samples[2:] # Skip first two frames
|
291 |
+
if pad_length == 0:
|
292 |
+
out_samples = out_samples[1:]
|
293 |
+
else:
|
294 |
+
out_samples = out_samples[1:-pad_length]
|
295 |
+
|
296 |
progress(0.8, desc="Creating output video...")
|
297 |
# Export video
|
298 |
export_to_video(out_samples, temp_video_path, fps=12)
|