Spaces:
Running
on
L40S
Running
on
L40S
| # The implementation is adopted from TFace,made pubicly available under the Apache-2.0 license at | |
| # https://github.com/Tencent/TFace/blob/master/recognition/torchkit/backbone/model_resnet.py | |
| import torch.nn as nn | |
| from torch.nn import BatchNorm1d, BatchNorm2d, Conv2d, Dropout, Linear, MaxPool2d, Module, ReLU, Sequential | |
| from .common import initialize_weights | |
| def conv3x3(in_planes, out_planes, stride=1): | |
| """ 3x3 convolution with padding | |
| """ | |
| return Conv2d( | |
| in_planes, | |
| out_planes, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=1, | |
| bias=False) | |
| def conv1x1(in_planes, out_planes, stride=1): | |
| """ 1x1 convolution | |
| """ | |
| return Conv2d( | |
| in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
| class Bottleneck(Module): | |
| expansion = 4 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = conv1x1(inplanes, planes) | |
| self.bn1 = BatchNorm2d(planes) | |
| self.conv2 = conv3x3(planes, planes, stride) | |
| self.bn2 = BatchNorm2d(planes) | |
| self.conv3 = conv1x1(planes, planes * self.expansion) | |
| self.bn3 = BatchNorm2d(planes * self.expansion) | |
| self.relu = ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| out = self.relu(out) | |
| return out | |
| class ResNet(Module): | |
| """ ResNet backbone | |
| """ | |
| def __init__(self, input_size, block, layers, zero_init_residual=True): | |
| """ Args: | |
| input_size: input_size of backbone | |
| block: block function | |
| layers: layers in each block | |
| """ | |
| super(ResNet, self).__init__() | |
| assert input_size[0] in [112, 224], \ | |
| 'input_size should be [112, 112] or [224, 224]' | |
| self.inplanes = 64 | |
| self.conv1 = Conv2d( | |
| 3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
| self.bn1 = BatchNorm2d(64) | |
| self.relu = ReLU(inplace=True) | |
| self.maxpool = MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.layer1 = self._make_layer(block, 64, layers[0]) | |
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
| self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
| self.bn_o1 = BatchNorm2d(2048) | |
| self.dropout = Dropout() | |
| if input_size[0] == 112: | |
| self.fc = Linear(2048 * 4 * 4, 512) | |
| else: | |
| self.fc = Linear(2048 * 7 * 7, 512) | |
| self.bn_o2 = BatchNorm1d(512) | |
| initialize_weights(self.modules) | |
| if zero_init_residual: | |
| for m in self.modules(): | |
| if isinstance(m, Bottleneck): | |
| nn.init.constant_(m.bn3.weight, 0) | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = Sequential( | |
| conv1x1(self.inplanes, planes * block.expansion, stride), | |
| BatchNorm2d(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes * block.expansion | |
| for _ in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return Sequential(*layers) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.maxpool(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.bn_o1(x) | |
| x = self.dropout(x) | |
| x = x.view(x.size(0), -1) | |
| x = self.fc(x) | |
| x = self.bn_o2(x) | |
| return x | |
| def ResNet_50(input_size, **kwargs): | |
| """ Constructs a ResNet-50 model. | |
| """ | |
| model = ResNet(input_size, Bottleneck, [3, 4, 6, 3], **kwargs) | |
| return model | |
| def ResNet_101(input_size, **kwargs): | |
| """ Constructs a ResNet-101 model. | |
| """ | |
| model = ResNet(input_size, Bottleneck, [3, 4, 23, 3], **kwargs) | |
| return model | |
| def ResNet_152(input_size, **kwargs): | |
| """ Constructs a ResNet-152 model. | |
| """ | |
| model = ResNet(input_size, Bottleneck, [3, 8, 36, 3], **kwargs) | |
| return model | |