Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
import os | |
import numpy as np | |
from PIL import Image | |
import glob | |
import insightface | |
import cv2 | |
import subprocess | |
import argparse | |
from decord import VideoReader | |
from moviepy.editor import ImageSequenceClip, AudioFileClip, VideoFileClip | |
from facexlib.parsing import init_parsing_model | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
from insightface.app import FaceAnalysis | |
from diffusers.models import AutoencoderKLCogVideoX | |
from diffusers.utils import export_to_video, load_image | |
from transformers import AutoModelForDepthEstimation, AutoProcessor, SiglipImageProcessor, SiglipVisionModel | |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
from skyreels_a1.models.transformer3d import CogVideoXTransformer3DModel | |
from skyreels_a1.skyreels_a1_i2v_pipeline import SkyReelsA1ImagePoseToVideoPipeline | |
from skyreels_a1.pre_process_lmk3d import FaceAnimationProcessor | |
from skyreels_a1.src.media_pipe.mp_utils import LMKExtractor | |
from skyreels_a1.src.media_pipe.draw_util_2d import FaceMeshVisualizer2d | |
def crop_and_resize(image, height, width): | |
image = np.array(image) | |
image_height, image_width, _ = image.shape | |
if image_height / image_width < height / width: | |
croped_width = int(image_height / height * width) | |
left = (image_width - croped_width) // 2 | |
image = image[:, left: left+croped_width] | |
image = Image.fromarray(image).resize((width, height)) | |
else: | |
pad = int((((width / height) * image_height) - image_width) / 2.) | |
padded_image = np.zeros((image_height, image_width + pad * 2, 3), dtype=np.uint8) | |
padded_image[:, pad:pad+image_width] = image | |
image = Image.fromarray(padded_image).resize((width, height)) | |
return image | |
def write_mp4(video_path, samples, fps=14, audio_bitrate="192k"): | |
clip = ImageSequenceClip(samples, fps=fps) | |
clip.write_videofile(video_path, audio_codec="aac", audio_bitrate=audio_bitrate, | |
ffmpeg_params=["-crf", "18", "-preset", "slow"]) | |
def init_model( | |
model_name: str = "pretrained_models/SkyReels-A1-5B/", | |
subfolder: str = "outputs/", | |
siglip_path: str = "pretrained_models/siglip-so400m-patch14-384", | |
weight_dtype=torch.bfloat16, | |
): | |
lmk_extractor = LMKExtractor() | |
vis = FaceMeshVisualizer2d(forehead_edge=False, draw_head=False, draw_iris=False,) | |
processor = FaceAnimationProcessor(checkpoint='pretrained_models/smirk/SMIRK_em1.pt') | |
face_helper = FaceRestoreHelper( | |
upscale_factor=1, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
device="cuda", | |
) | |
siglip = SiglipVisionModel.from_pretrained(siglip_path) | |
siglip_normalize = SiglipImageProcessor.from_pretrained(siglip_path) | |
transformer = CogVideoXTransformer3DModel.from_pretrained( | |
model_name, | |
subfolder="transformer", | |
).to(weight_dtype) | |
vae = AutoencoderKLCogVideoX.from_pretrained( | |
model_name, | |
subfolder="vae" | |
).to(weight_dtype) | |
lmk_encoder = AutoencoderKLCogVideoX.from_pretrained( | |
model_name, | |
subfolder="pose_guider" | |
).to(weight_dtype) | |
pipe = SkyReelsA1ImagePoseToVideoPipeline.from_pretrained( | |
model_name, | |
transformer = transformer, | |
vae = vae, | |
lmk_encoder = lmk_encoder, | |
image_encoder = siglip, | |
feature_extractor = siglip_normalize, | |
torch_dtype=weight_dtype) | |
pipe.to("cuda") | |
pipe.enable_model_cpu_offload() | |
pipe.vae.enable_tiling() | |
return pipe, face_helper, processor, lmk_extractor, vis | |
def generate_video( | |
pipe, | |
face_helper, | |
processor, | |
lmk_extractor, | |
vis, | |
control_video_path: str = None, | |
image_path: str = None, | |
save_path: str = None, | |
guidance_scale=3.0, | |
seed=43, | |
num_inference_steps=10, | |
sample_size=[480, 720], | |
max_frame_num=49, | |
weight_dtype=torch.bfloat16, | |
): | |
vr = VideoReader(control_video_path) | |
fps = vr.get_avg_fps() | |
video_length = len(vr) | |
duration = video_length / fps | |
target_times = np.arange(0, duration, 1/12) | |
frame_indices = (target_times * fps).astype(np.int32) | |
frame_indices = frame_indices[frame_indices < video_length] | |
control_frames = vr.get_batch(frame_indices).asnumpy()[:(max_frame_num-1)] | |
out_frames = len(control_frames) - 1 | |
if len(control_frames) < max_frame_num: | |
video_lenght_add = max_frame_num - len(control_frames) | |
control_frames = np.concatenate(([control_frames[0]]*2, control_frames[1:len(control_frames)-2], [control_frames[-1]] * video_lenght_add), axis=0) | |
# driving video crop face | |
driving_video_crop = [] | |
for control_frame in control_frames: | |
frame, _, _ = processor.face_crop(control_frame) | |
driving_video_crop.append(frame) | |
image = load_image(image=image_path) | |
image = crop_and_resize(image, sample_size[0], sample_size[1]) | |
with torch.no_grad(): | |
face_helper.clean_all() | |
face_helper.read_image(np.array(image)[:, :, ::-1]) | |
face_helper.get_face_landmarks_5(only_center_face=True) | |
face_helper.align_warp_face() | |
if len(face_helper.cropped_faces) == 0: | |
return | |
align_face = face_helper.cropped_faces[0] | |
image_face = align_face[:, :, ::-1] | |
# ref image crop face | |
ref_image, x1, y1 = processor.face_crop(np.array(image)) | |
face_h, face_w, _, = ref_image.shape | |
source_image = ref_image | |
driving_video = driving_video_crop | |
out_frames = processor.preprocess_lmk3d(source_image, driving_video) | |
rescale_motions = np.zeros_like(image)[np.newaxis, :].repeat(48, axis=0) | |
for ii in range(rescale_motions.shape[0]): | |
rescale_motions[ii][y1:y1+face_h, x1:x1+face_w] = out_frames[ii] | |
ref_image = cv2.resize(ref_image, (512, 512)) | |
ref_lmk = lmk_extractor(ref_image[:, :, ::-1]) | |
ref_img = vis.draw_landmarks_v3((512, 512), (face_w, face_h), ref_lmk['lmks'].astype(np.float32), normed=True) | |
first_motion = np.zeros_like(np.array(image)) | |
first_motion[y1:y1+face_h, x1:x1+face_w] = ref_img | |
first_motion = first_motion[np.newaxis, :] | |
motions = np.concatenate([first_motion, rescale_motions]) | |
input_video = motions[:max_frame_num] | |
input_video = input_video[:max_frame_num] | |
motions = np.array(input_video) | |
# [F, H, W, C] | |
input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0) | |
input_video = input_video / 255 | |
out_samples = [] | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with torch.no_grad(): | |
sample = pipe( | |
image=image, | |
image_face=image_face, | |
control_video = input_video, | |
height = sample_size[0], | |
width = sample_size[1], | |
num_frames = 49, | |
generator = generator, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
) | |
out_samples.extend(sample.frames[0][2:]) | |
# export_to_video(out_samples, save_path, fps=12) | |
control_frames = control_frames[1:] | |
target_h, target_w = sample_size | |
final_images = [] | |
for i in range(len(out_samples)): | |
frame1 = image | |
frame2 = crop_and_resize(Image.fromarray(np.array(control_frames[i])).convert("RGB"), target_h, target_w) | |
frame3 = Image.fromarray(np.array(out_samples[i])).convert("RGB") | |
result = Image.new('RGB', (target_w * 3, target_h)) | |
result.paste(frame1, (0, 0)) | |
result.paste(frame2, (target_w, 0)) | |
result.paste(frame3, (target_w * 2, 0)) | |
final_images.append(np.array(result)) | |
write_mp4(save_path, final_images, fps=12) | |
if __name__ == "__main__": | |
control_video_zip = glob.glob("assets/driving_video/*.mp4") | |
image_path_zip = glob.glob("assets/ref_images/*.png") | |
guidance_scale = 3.0 | |
seed = 43 | |
num_inference_steps = 10 | |
sample_size = [480, 720] | |
max_frame_num = 49 | |
weight_dtype = torch.bfloat16 | |
save_path = "outputs" | |
# init model | |
pipe, face_helper, processor, lmk_extractor, vis = init_model() | |
for i in range(len(control_video_zip)): | |
for j in range(len(image_path_zip)): | |
generate_video( | |
pipe, | |
face_helper, | |
processor, | |
lmk_extractor, | |
vis, | |
control_video_path=control_video_zip[i], | |
image_path=image_path_zip[j], | |
save_path=save_path, | |
guidance_scale=guidance_scale, | |
seed=seed, | |
num_inference_steps=num_inference_steps, | |
sample_size=sample_size, | |
max_frame_num=max_frame_num, | |
weight_dtype=weight_dtype, | |
) | |