multimodalart's picture
Upload 83 files
38e20ed verified
import torch
import os
import numpy as np
from PIL import Image
import glob
import insightface
import cv2
import subprocess
import argparse
from decord import VideoReader
from moviepy.editor import ImageSequenceClip, AudioFileClip, VideoFileClip
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from insightface.app import FaceAnalysis
from diffusers.models import AutoencoderKLCogVideoX
from diffusers.utils import export_to_video, load_image
from transformers import AutoModelForDepthEstimation, AutoProcessor, SiglipImageProcessor, SiglipVisionModel
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from skyreels_a1.models.transformer3d import CogVideoXTransformer3DModel
from skyreels_a1.skyreels_a1_i2v_pipeline import SkyReelsA1ImagePoseToVideoPipeline
from skyreels_a1.pre_process_lmk3d import FaceAnimationProcessor
from skyreels_a1.src.media_pipe.mp_utils import LMKExtractor
from skyreels_a1.src.media_pipe.draw_util_2d import FaceMeshVisualizer2d
def crop_and_resize(image, height, width):
image = np.array(image)
image_height, image_width, _ = image.shape
if image_height / image_width < height / width:
croped_width = int(image_height / height * width)
left = (image_width - croped_width) // 2
image = image[:, left: left+croped_width]
image = Image.fromarray(image).resize((width, height))
else:
pad = int((((width / height) * image_height) - image_width) / 2.)
padded_image = np.zeros((image_height, image_width + pad * 2, 3), dtype=np.uint8)
padded_image[:, pad:pad+image_width] = image
image = Image.fromarray(padded_image).resize((width, height))
return image
def write_mp4(video_path, samples, fps=14, audio_bitrate="192k"):
clip = ImageSequenceClip(samples, fps=fps)
clip.write_videofile(video_path, audio_codec="aac", audio_bitrate=audio_bitrate,
ffmpeg_params=["-crf", "18", "-preset", "slow"])
def init_model(
model_name: str = "pretrained_models/SkyReels-A1-5B/",
subfolder: str = "outputs/",
siglip_path: str = "pretrained_models/siglip-so400m-patch14-384",
weight_dtype=torch.bfloat16,
):
lmk_extractor = LMKExtractor()
vis = FaceMeshVisualizer2d(forehead_edge=False, draw_head=False, draw_iris=False,)
processor = FaceAnimationProcessor(checkpoint='pretrained_models/smirk/SMIRK_em1.pt')
face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device="cuda",
)
siglip = SiglipVisionModel.from_pretrained(siglip_path)
siglip_normalize = SiglipImageProcessor.from_pretrained(siglip_path)
transformer = CogVideoXTransformer3DModel.from_pretrained(
model_name,
subfolder="transformer",
).to(weight_dtype)
vae = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="vae"
).to(weight_dtype)
lmk_encoder = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="pose_guider"
).to(weight_dtype)
pipe = SkyReelsA1ImagePoseToVideoPipeline.from_pretrained(
model_name,
transformer = transformer,
vae = vae,
lmk_encoder = lmk_encoder,
image_encoder = siglip,
feature_extractor = siglip_normalize,
torch_dtype=weight_dtype)
pipe.to("cuda")
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
return pipe, face_helper, processor, lmk_extractor, vis
def generate_video(
pipe,
face_helper,
processor,
lmk_extractor,
vis,
control_video_path: str = None,
image_path: str = None,
save_path: str = None,
guidance_scale=3.0,
seed=43,
num_inference_steps=10,
sample_size=[480, 720],
max_frame_num=49,
weight_dtype=torch.bfloat16,
):
vr = VideoReader(control_video_path)
fps = vr.get_avg_fps()
video_length = len(vr)
duration = video_length / fps
target_times = np.arange(0, duration, 1/12)
frame_indices = (target_times * fps).astype(np.int32)
frame_indices = frame_indices[frame_indices < video_length]
control_frames = vr.get_batch(frame_indices).asnumpy()[:(max_frame_num-1)]
out_frames = len(control_frames) - 1
if len(control_frames) < max_frame_num:
video_lenght_add = max_frame_num - len(control_frames)
control_frames = np.concatenate(([control_frames[0]]*2, control_frames[1:len(control_frames)-2], [control_frames[-1]] * video_lenght_add), axis=0)
# driving video crop face
driving_video_crop = []
for control_frame in control_frames:
frame, _, _ = processor.face_crop(control_frame)
driving_video_crop.append(frame)
image = load_image(image=image_path)
image = crop_and_resize(image, sample_size[0], sample_size[1])
with torch.no_grad():
face_helper.clean_all()
face_helper.read_image(np.array(image)[:, :, ::-1])
face_helper.get_face_landmarks_5(only_center_face=True)
face_helper.align_warp_face()
if len(face_helper.cropped_faces) == 0:
return
align_face = face_helper.cropped_faces[0]
image_face = align_face[:, :, ::-1]
# ref image crop face
ref_image, x1, y1 = processor.face_crop(np.array(image))
face_h, face_w, _, = ref_image.shape
source_image = ref_image
driving_video = driving_video_crop
out_frames = processor.preprocess_lmk3d(source_image, driving_video)
rescale_motions = np.zeros_like(image)[np.newaxis, :].repeat(48, axis=0)
for ii in range(rescale_motions.shape[0]):
rescale_motions[ii][y1:y1+face_h, x1:x1+face_w] = out_frames[ii]
ref_image = cv2.resize(ref_image, (512, 512))
ref_lmk = lmk_extractor(ref_image[:, :, ::-1])
ref_img = vis.draw_landmarks_v3((512, 512), (face_w, face_h), ref_lmk['lmks'].astype(np.float32), normed=True)
first_motion = np.zeros_like(np.array(image))
first_motion[y1:y1+face_h, x1:x1+face_w] = ref_img
first_motion = first_motion[np.newaxis, :]
motions = np.concatenate([first_motion, rescale_motions])
input_video = motions[:max_frame_num]
input_video = input_video[:max_frame_num]
motions = np.array(input_video)
# [F, H, W, C]
input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
input_video = input_video / 255
out_samples = []
generator = torch.Generator(device="cuda").manual_seed(seed)
with torch.no_grad():
sample = pipe(
image=image,
image_face=image_face,
control_video = input_video,
height = sample_size[0],
width = sample_size[1],
num_frames = 49,
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
)
out_samples.extend(sample.frames[0][2:])
# export_to_video(out_samples, save_path, fps=12)
control_frames = control_frames[1:]
target_h, target_w = sample_size
final_images = []
for i in range(len(out_samples)):
frame1 = image
frame2 = crop_and_resize(Image.fromarray(np.array(control_frames[i])).convert("RGB"), target_h, target_w)
frame3 = Image.fromarray(np.array(out_samples[i])).convert("RGB")
result = Image.new('RGB', (target_w * 3, target_h))
result.paste(frame1, (0, 0))
result.paste(frame2, (target_w, 0))
result.paste(frame3, (target_w * 2, 0))
final_images.append(np.array(result))
write_mp4(save_path, final_images, fps=12)
if __name__ == "__main__":
control_video_zip = glob.glob("assets/driving_video/*.mp4")
image_path_zip = glob.glob("assets/ref_images/*.png")
guidance_scale = 3.0
seed = 43
num_inference_steps = 10
sample_size = [480, 720]
max_frame_num = 49
weight_dtype = torch.bfloat16
save_path = "outputs"
# init model
pipe, face_helper, processor, lmk_extractor, vis = init_model()
for i in range(len(control_video_zip)):
for j in range(len(image_path_zip)):
generate_video(
pipe,
face_helper,
processor,
lmk_extractor,
vis,
control_video_path=control_video_zip[i],
image_path=image_path_zip[j],
save_path=save_path,
guidance_scale=guidance_scale,
seed=seed,
num_inference_steps=num_inference_steps,
sample_size=sample_size,
max_frame_num=max_frame_num,
weight_dtype=weight_dtype,
)