skyreels-a1-talking-head / inference_audio.py
multimodalart's picture
Upload 83 files
38e20ed verified
import torch
import os
import numpy as np
from PIL import Image
import glob
import insightface
import cv2
import subprocess
import argparse
from decord import VideoReader
from moviepy.editor import ImageSequenceClip, AudioFileClip, VideoFileClip
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from insightface.app import FaceAnalysis
from diffusers.models import AutoencoderKLCogVideoX
from diffusers.utils import export_to_video, load_image
from transformers import AutoModelForDepthEstimation, AutoProcessor, SiglipImageProcessor, SiglipVisionModel
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from skyreels_a1.models.transformer3d import CogVideoXTransformer3DModel
from skyreels_a1.skyreels_a1_i2v_pipeline import SkyReelsA1ImagePoseToVideoPipeline
from skyreels_a1.pre_process_lmk3d import FaceAnimationProcessor
from skyreels_a1.src.media_pipe.mp_utils import LMKExtractor
from skyreels_a1.src.media_pipe.draw_util_2d import FaceMeshVisualizer2d
import moviepy.editor as mp
from diffposetalk.diffposetalk import DiffPoseTalk
def crop_and_resize(image, height, width):
image = np.array(image)
image_height, image_width, _ = image.shape
if image_height / image_width < height / width:
croped_width = int(image_height / height * width)
left = (image_width - croped_width) // 2
image = image[:, left: left+croped_width]
image = Image.fromarray(image).resize((width, height))
else:
pad = int((((width / height) * image_height) - image_width) / 2.)
padded_image = np.zeros((image_height, image_width + pad * 2, 3), dtype=np.uint8)
padded_image[:, pad:pad+image_width] = image
image = Image.fromarray(padded_image).resize((width, height))
return image
def write_mp4(video_path, samples, fps=12, audio_bitrate="192k"):
clip = ImageSequenceClip(samples, fps=fps)
clip.write_videofile(video_path, audio_codec="aac", audio_bitrate=audio_bitrate,
ffmpeg_params=["-crf", "18", "-preset", "slow"])
def parse_video(driving_frames, max_frame_num, fps=25):
video_length = len(driving_frames)
duration = video_length / fps
target_times = np.arange(0, duration, 1/12)
frame_indices = (target_times * fps).astype(np.int32)
frame_indices = frame_indices[frame_indices < video_length]
new_driving_frames = []
for idx in frame_indices:
new_driving_frames.append(driving_frames[idx])
if len(new_driving_frames) >= max_frame_num - 1:
break
video_lenght_add = max_frame_num - len(new_driving_frames) - 1
new_driving_frames = [new_driving_frames[0]]*2 + new_driving_frames[1:len(new_driving_frames)-1] + [new_driving_frames[-1]] * video_lenght_add
return new_driving_frames
def save_video_with_audio(video_path:str, audio_path: str, save_path: str):
video_clip = mp.VideoFileClip(video_path)
audio_clip = mp.AudioFileClip(audio_path)
if audio_clip.duration > video_clip.duration:
audio_clip = audio_clip.subclip(0, video_clip.duration)
video_with_audio = video_clip.set_audio(audio_clip)
video_with_audio.write_videofile(save_path, fps=12)
os.remove(video_path)
video_clip.close()
audio_clip.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process video and image for face animation.")
parser.add_argument('--image_path', type=str, default="assets/ref_images/1.png", help='Path to the source image.')
parser.add_argument('--driving_audio_path', type=str, default="assets/driving_audio/1.wav", help='Path to the driving video.')
parser.add_argument('--output_path', type=str, default="outputs_audio", help='Path to save the output video.')
args = parser.parse_args()
guidance_scale = 3.0
seed = 43
num_inference_steps = 10
sample_size = [480, 720]
max_frame_num = 49
weight_dtype = torch.bfloat16
save_path = args.output_path
generator = torch.Generator(device="cuda").manual_seed(seed)
model_name = "pretrained_models/SkyReels-A1-5B/"
siglip_name = "pretrained_models/SkyReels-A1-5B/siglip-so400m-patch14-384"
lmk_extractor = LMKExtractor()
processor = FaceAnimationProcessor(checkpoint='pretrained_models/smirk/SMIRK_em1.pt')
vis = FaceMeshVisualizer2d(forehead_edge=False, draw_head=False, draw_iris=False,)
face_helper = FaceRestoreHelper(upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', device="cuda",)
# siglip visual encoder
siglip = SiglipVisionModel.from_pretrained(siglip_name)
siglip_normalize = SiglipImageProcessor.from_pretrained(siglip_name)
# diffposetalk
diffposetalk = DiffPoseTalk()
# skyreels a1 model
transformer = CogVideoXTransformer3DModel.from_pretrained(
model_name,
subfolder="transformer"
).to(weight_dtype)
vae = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="vae"
).to(weight_dtype)
lmk_encoder = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="pose_guider",
).to(weight_dtype)
pipe = SkyReelsA1ImagePoseToVideoPipeline.from_pretrained(
model_name,
transformer = transformer,
vae = vae,
lmk_encoder = lmk_encoder,
image_encoder = siglip,
feature_extractor = siglip_normalize,
torch_dtype=torch.bfloat16
)
pipe.to("cuda")
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
image = load_image(image=args.image_path)
image = processor.crop_and_resize(image, sample_size[0], sample_size[1])
# ref image crop face
ref_image, x1, y1 = processor.face_crop(np.array(image))
face_h, face_w, _, = ref_image.shape
source_image = ref_image
source_outputs, source_tform, image_original = processor.process_source_image(source_image)
driving_outputs = diffposetalk.infer_from_file(args.driving_audio_path, source_outputs["shape_params"].view(-1)[:100].detach().cpu().numpy())
out_frames = processor.preprocess_lmk3d_from_coef(source_outputs, source_tform, image_original.shape, driving_outputs)
out_frames = parse_video(out_frames, max_frame_num)
rescale_motions = np.zeros_like(image)[np.newaxis, :].repeat(48, axis=0)
for ii in range(rescale_motions.shape[0]):
rescale_motions[ii][y1:y1+face_h, x1:x1+face_w] = out_frames[ii]
ref_image = cv2.resize(ref_image, (512, 512))
ref_lmk = lmk_extractor(ref_image[:, :, ::-1])
ref_img = vis.draw_landmarks_v3((512, 512), (face_w, face_h), ref_lmk['lmks'].astype(np.float32), normed=True)
first_motion = np.zeros_like(np.array(image))
first_motion[y1:y1+face_h, x1:x1+face_w] = ref_img
first_motion = first_motion[np.newaxis, :]
motions = np.concatenate([first_motion, rescale_motions])
input_video = motions[:max_frame_num]
face_helper.clean_all()
face_helper.read_image(np.array(image)[:, :, ::-1])
face_helper.get_face_landmarks_5(only_center_face=True)
face_helper.align_warp_face()
align_face = face_helper.cropped_faces[0]
image_face = align_face[:, :, ::-1]
input_video = input_video[:max_frame_num]
motions = np.array(input_video)
# [F, H, W, C]
input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
input_video = input_video / 255
out_samples = []
with torch.no_grad():
sample = pipe(
image=image,
image_face=image_face,
control_video = input_video,
prompt = "",
negative_prompt = "",
height = sample_size[0],
width = sample_size[1],
num_frames = 49,
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
)
out_samples.extend(sample.frames[0])
out_samples = out_samples[2:]
save_path_name = os.path.basename(args.image_path).split(".")[0] + "-" + os.path.basename(args.driving_audio_path).split(".")[0]+ ".mp4"
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
video_path = os.path.join(save_path, save_path_name + ".output.mp4")
export_to_video(out_samples, video_path, fps=12)
target_h, target_w = sample_size[0], sample_size[1]
final_images = []
final_images2 =[]
rescale_motions = rescale_motions[1:]
control_frames = out_frames[1:]
for q in range(len(out_samples)):
frame1 = image
frame2 = Image.fromarray(np.array(out_samples[q])).convert("RGB")
result = Image.new('RGB', (target_w * 2, target_h))
result.paste(frame1, (0, 0))
result.paste(frame2, (target_w, 0))
final_images.append(np.array(result))
video_out_path = os.path.join(save_path, save_path_name)
write_mp4(video_out_path, final_images, fps=12)
save_video_with_audio(video_out_path, args.driving_audio_path, video_out_path + ".audio.mp4")
save_video_with_audio(video_path, args.driving_audio_path, video_path + ".audio.mp4")