Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .common import PositionalEncoding, enc_dec_mask, pad_audio | |
class DiffusionSchedule(nn.Module): | |
def __init__(self, num_steps, mode='linear', beta_1=1e-4, beta_T=0.02, s=0.008): | |
super().__init__() | |
if mode == 'linear': | |
betas = torch.linspace(beta_1, beta_T, num_steps) | |
elif mode == 'quadratic': | |
betas = torch.linspace(beta_1 ** 0.5, beta_T ** 0.5, num_steps) ** 2 | |
elif mode == 'sigmoid': | |
betas = torch.sigmoid(torch.linspace(-5, 5, num_steps)) * (beta_T - beta_1) + beta_1 | |
elif mode == 'cosine': | |
steps = num_steps + 1 | |
x = torch.linspace(0, num_steps, steps) | |
alpha_bars = torch.cos(((x / num_steps) + s) / (1 + s) * torch.pi * 0.5) ** 2 | |
alpha_bars = alpha_bars / alpha_bars[0] | |
betas = 1 - (alpha_bars[1:] / alpha_bars[:-1]) | |
betas = torch.clip(betas, 0.0001, 0.999) | |
else: | |
raise ValueError(f'Unknown diffusion schedule {mode}!') | |
betas = torch.cat([torch.zeros(1), betas], dim=0) # Padding beta_0 = 0 | |
alphas = 1 - betas | |
log_alphas = torch.log(alphas) | |
for i in range(1, log_alphas.shape[0]): # 1 to T | |
log_alphas[i] += log_alphas[i - 1] | |
alpha_bars = log_alphas.exp() | |
sigmas_flex = torch.sqrt(betas) | |
sigmas_inflex = torch.zeros_like(sigmas_flex) | |
for i in range(1, sigmas_flex.shape[0]): | |
sigmas_inflex[i] = ((1 - alpha_bars[i - 1]) / (1 - alpha_bars[i])) * betas[i] | |
sigmas_inflex = torch.sqrt(sigmas_inflex) | |
self.num_steps = num_steps | |
self.register_buffer('betas', betas) | |
self.register_buffer('alphas', alphas) | |
self.register_buffer('alpha_bars', alpha_bars) | |
self.register_buffer('sigmas_flex', sigmas_flex) | |
self.register_buffer('sigmas_inflex', sigmas_inflex) | |
def uniform_sample_t(self, batch_size): | |
ts = torch.randint(1, self.num_steps + 1, (batch_size,)) | |
return ts.tolist() | |
def get_sigmas(self, t, flexibility=0): | |
assert 0 <= flexibility <= 1 | |
sigmas = self.sigmas_flex[t] * flexibility + self.sigmas_inflex[t] * (1 - flexibility) | |
return sigmas | |
class DiffTalkingHead(nn.Module): | |
def __init__(self, args, device='cuda'): | |
super().__init__() | |
# Model parameters | |
self.target = args.target | |
self.architecture = args.architecture | |
self.use_style = args.style_enc_ckpt is not None | |
self.motion_feat_dim = 50 | |
if args.rot_repr == 'aa': | |
self.motion_feat_dim += 1 if args.no_head_pose else 4 | |
else: | |
raise ValueError(f'Unknown rotation representation {args.rot_repr}!') | |
self.fps = args.fps | |
self.n_motions = args.n_motions | |
self.n_prev_motions = args.n_prev_motions | |
if self.use_style: | |
self.style_feat_dim = args.d_style | |
# Audio encoder | |
self.audio_model = args.audio_model | |
if self.audio_model == 'wav2vec2': | |
from .wav2vec2 import Wav2Vec2Model | |
self.audio_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h') | |
# wav2vec 2.0 weights initialization | |
self.audio_encoder.feature_extractor._freeze_parameters() | |
elif self.audio_model == 'hubert': | |
from .hubert import HubertModel | |
self.audio_encoder = HubertModel.from_pretrained('facebook/hubert-base-ls960') | |
self.audio_encoder.feature_extractor._freeze_parameters() | |
frozen_layers = [0, 1] | |
for name, param in self.audio_encoder.named_parameters(): | |
if name.startswith("feature_projection"): | |
param.requires_grad = False | |
if name.startswith("encoder.layers"): | |
layer = int(name.split(".")[2]) | |
if layer in frozen_layers: | |
param.requires_grad = False | |
else: | |
raise ValueError(f'Unknown audio model {self.audio_model}!') | |
if args.architecture == 'decoder': | |
self.audio_feature_map = nn.Linear(768, args.feature_dim) | |
self.start_audio_feat = nn.Parameter(torch.randn(1, self.n_prev_motions, args.feature_dim)) | |
else: | |
raise ValueError(f'Unknown architecture {args.architecture}!') | |
self.start_motion_feat = nn.Parameter(torch.randn(1, self.n_prev_motions, self.motion_feat_dim)) | |
# Diffusion model | |
self.denoising_net = DenoisingNetwork(args, device) | |
# diffusion schedule | |
self.diffusion_sched = DiffusionSchedule(args.n_diff_steps, args.diff_schedule) | |
# Classifier-free settings | |
self.cfg_mode = args.cfg_mode | |
guiding_conditions = args.guiding_conditions.split(',') if args.guiding_conditions else [] | |
self.guiding_conditions = [cond for cond in guiding_conditions if cond in ['style', 'audio']] | |
if 'style' in self.guiding_conditions: | |
if not self.use_style: | |
raise ValueError('Cannot use style guiding without enabling it!') | |
self.null_style_feat = nn.Parameter(torch.randn(1, 1, self.style_feat_dim)) | |
if 'audio' in self.guiding_conditions: | |
audio_feat_dim = args.feature_dim | |
self.null_audio_feat = nn.Parameter(torch.randn(1, 1, audio_feat_dim)) | |
self.to(device) | |
def device(self): | |
return next(self.parameters()).device | |
def forward(self, motion_feat, audio_or_feat, shape_feat, style_feat=None, | |
prev_motion_feat=None, prev_audio_feat=None, time_step=None, indicator=None): | |
""" | |
Args: | |
motion_feat: (N, L, d_coef) motion coefficients or features | |
audio_or_feat: (N, L_audio) raw audio or audio feature | |
shape_feat: (N, d_shape) or (N, 1, d_shape) | |
style_feat: (N, d_style) | |
prev_motion_feat: (N, n_prev_motions, d_motion) previous motion coefficients or feature | |
prev_audio_feat: (N, n_prev_motions, d_audio) previous audio features | |
time_step: (N,) | |
indicator: (N, L) 0/1 indicator of real (unpadded) motion coefficients | |
Returns: | |
motion_feat_noise: (N, L, d_motion) | |
""" | |
if self.use_style: | |
assert style_feat is not None, 'Missing style features!' | |
batch_size = motion_feat.shape[0] | |
if audio_or_feat.ndim == 2: | |
# Extract audio features | |
assert audio_or_feat.shape[1] == 16000 * self.n_motions / self.fps, \ | |
f'Incorrect audio length {audio_or_feat.shape[1]}' | |
audio_feat_saved = self.extract_audio_feature(audio_or_feat) # (N, L, feature_dim) | |
elif audio_or_feat.ndim == 3: | |
assert audio_or_feat.shape[1] == self.n_motions, f'Incorrect audio feature length {audio_or_feat.shape[1]}' | |
audio_feat_saved = audio_or_feat | |
else: | |
raise ValueError(f'Incorrect audio input shape {audio_or_feat.shape}') | |
audio_feat = audio_feat_saved.clone() | |
if shape_feat.ndim == 2: | |
shape_feat = shape_feat.unsqueeze(1) # (N, 1, d_shape) | |
if style_feat is not None and style_feat.ndim == 2: | |
style_feat = style_feat.unsqueeze(1) # (N, 1, d_style) | |
if prev_motion_feat is None: | |
prev_motion_feat = self.start_motion_feat.expand(batch_size, -1, -1) # (N, n_prev_motions, d_motion) | |
if prev_audio_feat is None: | |
# (N, n_prev_motions, feature_dim) | |
prev_audio_feat = self.start_audio_feat.expand(batch_size, -1, -1) | |
# Classifier-free guidance | |
if len(self.guiding_conditions) > 0: | |
assert len(self.guiding_conditions) <= 2, 'Only support 1 or 2 CFG conditions!' | |
if len(self.guiding_conditions) == 1 or self.cfg_mode == 'independent': | |
null_cond_prob = 0.5 if len(self.guiding_conditions) >= 2 else 0.1 | |
if 'style' in self.guiding_conditions: | |
mask_style = torch.rand(batch_size, device=self.device) < null_cond_prob | |
style_feat = torch.where(mask_style.view(-1, 1, 1), | |
self.null_style_feat.expand(batch_size, -1, -1), | |
style_feat) | |
if 'audio' in self.guiding_conditions: | |
mask_audio = torch.rand(batch_size, device=self.device) < null_cond_prob | |
audio_feat = torch.where(mask_audio.view(-1, 1, 1), | |
self.null_audio_feat.expand(batch_size, self.n_motions, -1), | |
audio_feat) | |
else: | |
# len(self.guiding_conditions) > 1 and self.cfg_mode == 'incremental' | |
# full (0.45), w/o style (0.45), w/o style or audio (0.1) | |
mask_flag = torch.rand(batch_size, device=self.device) | |
if 'style' in self.guiding_conditions: | |
mask_style = mask_flag > 0.55 | |
style_feat = torch.where(mask_style.view(-1, 1, 1), | |
self.null_style_feat.expand(batch_size, -1, -1), | |
style_feat) | |
if 'audio' in self.guiding_conditions: | |
mask_audio = mask_flag > 0.9 | |
audio_feat = torch.where(mask_audio.view(-1, 1, 1), | |
self.null_audio_feat.expand(batch_size, self.n_motions, -1), | |
audio_feat) | |
if style_feat is None: | |
# The model only accepts audio and shape features, i.e., self.use_style = False | |
person_feat = shape_feat | |
else: | |
person_feat = torch.cat([shape_feat, style_feat], dim=-1) | |
if time_step is None: | |
# Sample time step | |
time_step = self.diffusion_sched.uniform_sample_t(batch_size) # (N,) | |
# The forward diffusion process | |
alpha_bar = self.diffusion_sched.alpha_bars[time_step] # (N,) | |
c0 = torch.sqrt(alpha_bar).view(-1, 1, 1) # (N, 1, 1) | |
c1 = torch.sqrt(1 - alpha_bar).view(-1, 1, 1) # (N, 1, 1) | |
eps = torch.randn_like(motion_feat) # (N, L, d_motion) | |
motion_feat_noisy = c0 * motion_feat + c1 * eps | |
# The reverse diffusion process | |
motion_feat_target = self.denoising_net(motion_feat_noisy, audio_feat, person_feat, | |
prev_motion_feat, prev_audio_feat, time_step, indicator) | |
return eps, motion_feat_target, motion_feat.detach(), audio_feat_saved.detach() | |
def extract_audio_feature(self, audio, frame_num=None): | |
frame_num = frame_num or self.n_motions | |
# # Strategy 1: resample during audio feature extraction | |
# hidden_states = self.audio_encoder(pad_audio(audio), self.fps, frame_num=frame_num).last_hidden_state # (N, L, 768) | |
# Strategy 2: resample after audio feature extraction (BackResample) | |
hidden_states = self.audio_encoder(pad_audio(audio), self.fps, | |
frame_num=frame_num * 2).last_hidden_state # (N, 2L, 768) | |
hidden_states = hidden_states.transpose(1, 2) # (N, 768, 2L) | |
hidden_states = F.interpolate(hidden_states, size=frame_num, align_corners=False, mode='linear') # (N, 768, L) | |
hidden_states = hidden_states.transpose(1, 2) # (N, L, 768) | |
audio_feat = self.audio_feature_map(hidden_states) # (N, L, feature_dim) | |
return audio_feat | |
def sample(self, audio_or_feat, shape_feat, style_feat=None, prev_motion_feat=None, prev_audio_feat=None, | |
motion_at_T=None, indicator=None, cfg_mode=None, cfg_cond=None, cfg_scale=1.15, flexibility=0, | |
dynamic_threshold=None, ret_traj=False): | |
# Check and convert inputs | |
batch_size = audio_or_feat.shape[0] | |
# Check CFG conditions | |
if cfg_mode is None: # Use default CFG mode | |
cfg_mode = self.cfg_mode | |
if cfg_cond is None: # Use default CFG conditions | |
cfg_cond = self.guiding_conditions | |
cfg_cond = [c for c in cfg_cond if c in ['audio', 'style']] | |
if not isinstance(cfg_scale, list): | |
cfg_scale = [cfg_scale] * len(cfg_cond) | |
# sort cfg_cond and cfg_scale | |
if len(cfg_cond) > 0: | |
cfg_cond, cfg_scale = zip(*sorted(zip(cfg_cond, cfg_scale), key=lambda x: ['audio', 'style'].index(x[0]))) | |
else: | |
cfg_cond, cfg_scale = [], [] | |
if 'style' in cfg_cond: | |
assert self.use_style and style_feat is not None | |
if self.use_style: | |
if style_feat is None: # use null style feature | |
style_feat = self.null_style_feat.expand(batch_size, -1, -1) | |
else: | |
assert style_feat is None, 'This model does not support style feature input!' | |
if audio_or_feat.ndim == 2: | |
# Extract audio features | |
assert audio_or_feat.shape[1] == 16000 * self.n_motions / self.fps, \ | |
f'Incorrect audio length {audio_or_feat.shape[1]}' | |
audio_feat = self.extract_audio_feature(audio_or_feat) # (N, L, feature_dim) | |
elif audio_or_feat.ndim == 3: | |
assert audio_or_feat.shape[1] == self.n_motions, f'Incorrect audio feature length {audio_or_feat.shape[1]}' | |
audio_feat = audio_or_feat | |
else: | |
raise ValueError(f'Incorrect audio input shape {audio_or_feat.shape}') | |
if shape_feat.ndim == 2: | |
shape_feat = shape_feat.unsqueeze(1) # (N, 1, d_shape) | |
if style_feat is not None and style_feat.ndim == 2: | |
style_feat = style_feat.unsqueeze(1) # (N, 1, d_style) | |
if prev_motion_feat is None: | |
prev_motion_feat = self.start_motion_feat.expand(batch_size, -1, -1) # (N, n_prev_motions, d_motion) | |
if prev_audio_feat is None: | |
# (N, n_prev_motions, feature_dim) | |
prev_audio_feat = self.start_audio_feat.expand(batch_size, -1, -1) | |
if motion_at_T is None: | |
motion_at_T = torch.randn((batch_size, self.n_motions, self.motion_feat_dim)).to(self.device) | |
# Prepare input for the reverse diffusion process (including optional classifier-free guidance) | |
if 'audio' in cfg_cond: | |
audio_feat_null = self.null_audio_feat.expand(batch_size, self.n_motions, -1) | |
else: | |
audio_feat_null = audio_feat | |
if 'style' in cfg_cond: | |
person_feat_null = torch.cat([shape_feat, self.null_style_feat.expand(batch_size, -1, -1)], dim=-1) | |
else: | |
if self.use_style: | |
person_feat_null = torch.cat([shape_feat, style_feat], dim=-1) | |
else: | |
person_feat_null = shape_feat | |
audio_feat_in = [audio_feat_null] | |
person_feat_in = [person_feat_null] | |
for cond in cfg_cond: | |
if cond == 'audio': | |
audio_feat_in.append(audio_feat) | |
person_feat_in.append(person_feat_null) | |
elif cond == 'style': | |
if cfg_mode == 'independent': | |
audio_feat_in.append(audio_feat_null) | |
elif cfg_mode == 'incremental': | |
audio_feat_in.append(audio_feat) | |
else: | |
raise NotImplementedError(f'Unknown cfg_mode {cfg_mode}') | |
person_feat_in.append(torch.cat([shape_feat, style_feat], dim=-1)) | |
n_entries = len(audio_feat_in) | |
audio_feat_in = torch.cat(audio_feat_in, dim=0) | |
person_feat_in = torch.cat(person_feat_in, dim=0) | |
prev_motion_feat_in = torch.cat([prev_motion_feat] * n_entries, dim=0) | |
prev_audio_feat_in = torch.cat([prev_audio_feat] * n_entries, dim=0) | |
indicator_in = torch.cat([indicator] * n_entries, dim=0) if indicator is not None else None | |
traj = {self.diffusion_sched.num_steps: motion_at_T} | |
for t in range(self.diffusion_sched.num_steps, 0, -1): | |
if t > 1: | |
z = torch.randn_like(motion_at_T) | |
else: | |
z = torch.zeros_like(motion_at_T) | |
alpha = self.diffusion_sched.alphas[t] | |
alpha_bar = self.diffusion_sched.alpha_bars[t] | |
alpha_bar_prev = self.diffusion_sched.alpha_bars[t - 1] | |
sigma = self.diffusion_sched.get_sigmas(t, flexibility) | |
motion_at_t = traj[t] | |
motion_in = torch.cat([motion_at_t] * n_entries, dim=0) | |
step_in = torch.tensor([t] * batch_size, device=self.device) | |
step_in = torch.cat([step_in] * n_entries, dim=0) | |
results = self.denoising_net(motion_in, audio_feat_in, person_feat_in, prev_motion_feat_in, | |
prev_audio_feat_in, step_in, indicator_in) | |
# Apply thresholding if specified | |
if dynamic_threshold: | |
dt_ratio, dt_min, dt_max = dynamic_threshold | |
abs_results = results[:, -self.n_motions:].reshape(batch_size * n_entries, -1).abs() | |
s = torch.quantile(abs_results, dt_ratio, dim=1) | |
s = torch.clamp(s, min=dt_min, max=dt_max) | |
s = s[..., None, None] | |
results = torch.clamp(results, min=-s, max=s) | |
results = results.chunk(n_entries) | |
# Unconditional target (CFG) or the conditional target (non-CFG) | |
target_theta = results[0][:, -self.n_motions:] | |
# Classifier-free Guidance (optional) | |
for i in range(0, n_entries - 1): | |
if cfg_mode == 'independent': | |
target_theta += cfg_scale[i] * ( | |
results[i + 1][:, -self.n_motions:] - results[0][:, -self.n_motions:]) | |
elif cfg_mode == 'incremental': | |
target_theta += cfg_scale[i] * ( | |
results[i + 1][:, -self.n_motions:] - results[i][:, -self.n_motions:]) | |
else: | |
raise NotImplementedError(f'Unknown cfg_mode {cfg_mode}') | |
if self.target == 'noise': | |
c0 = 1 / torch.sqrt(alpha) | |
c1 = (1 - alpha) / torch.sqrt(1 - alpha_bar) | |
motion_next = c0 * (motion_at_t - c1 * target_theta) + sigma * z | |
elif self.target == 'sample': | |
c0 = (1 - alpha_bar_prev) * torch.sqrt(alpha) / (1 - alpha_bar) | |
c1 = (1 - alpha) * torch.sqrt(alpha_bar_prev) / (1 - alpha_bar) | |
motion_next = c0 * motion_at_t + c1 * target_theta + sigma * z | |
else: | |
raise ValueError('Unknown target type: {}'.format(self.target)) | |
traj[t - 1] = motion_next.detach() # Stop gradient and save trajectory. | |
traj[t] = traj[t].cpu() # Move previous output to CPU memory. | |
if not ret_traj: | |
del traj[t] | |
if ret_traj: | |
return traj, motion_at_T, audio_feat | |
else: | |
return traj[0], motion_at_T, audio_feat | |
class DenoisingNetwork(nn.Module): | |
def __init__(self, args, device='cuda'): | |
super().__init__() | |
# Model parameters | |
self.use_style = args.style_enc_ckpt is not None | |
self.motion_feat_dim = 50 | |
if args.rot_repr == 'aa': | |
self.motion_feat_dim += 1 if args.no_head_pose else 4 | |
else: | |
raise ValueError(f'Unknown rotation representation {args.rot_repr}!') | |
self.shape_feat_dim = 100 | |
if self.use_style: | |
self.style_feat_dim = args.d_style | |
self.person_feat_dim = self.shape_feat_dim + self.style_feat_dim | |
else: | |
self.person_feat_dim = self.shape_feat_dim | |
self.use_indicator = args.use_indicator | |
# Transformer | |
self.architecture = args.architecture | |
self.feature_dim = args.feature_dim | |
self.n_heads = args.n_heads | |
self.n_layers = args.n_layers | |
self.mlp_ratio = args.mlp_ratio | |
self.align_mask_width = args.align_mask_width | |
self.use_learnable_pe = not args.no_use_learnable_pe | |
# sequence length | |
self.n_prev_motions = args.n_prev_motions | |
self.n_motions = args.n_motions | |
# Temporal embedding for the diffusion time step | |
self.TE = PositionalEncoding(self.feature_dim, max_len=args.n_diff_steps + 1) | |
self.diff_step_map = nn.Sequential( | |
nn.Linear(self.feature_dim, self.feature_dim), | |
nn.GELU(), | |
nn.Linear(self.feature_dim, self.feature_dim) | |
) | |
if self.use_learnable_pe: | |
# Learnable positional encoding | |
self.PE = nn.Parameter(torch.randn(1, 1 + self.n_prev_motions + self.n_motions, self.feature_dim)) | |
else: | |
self.PE = PositionalEncoding(self.feature_dim) | |
self.person_proj = nn.Linear(self.person_feat_dim, self.feature_dim) | |
# Transformer decoder | |
if self.architecture == 'decoder': | |
self.feature_proj = nn.Linear(self.motion_feat_dim + (1 if self.use_indicator else 0), | |
self.feature_dim) | |
decoder_layer = nn.TransformerDecoderLayer( | |
d_model=self.feature_dim, nhead=self.n_heads, dim_feedforward=self.mlp_ratio * self.feature_dim, | |
activation='gelu', batch_first=True | |
) | |
self.transformer = nn.TransformerDecoder(decoder_layer, num_layers=self.n_layers) | |
if self.align_mask_width > 0: | |
motion_len = self.n_prev_motions + self.n_motions | |
alignment_mask = enc_dec_mask(motion_len, motion_len, 1, self.align_mask_width - 1) | |
alignment_mask = F.pad(alignment_mask, (0, 0, 1, 0), value=False) | |
self.register_buffer('alignment_mask', alignment_mask) | |
else: | |
self.alignment_mask = None | |
else: | |
raise ValueError(f'Unknown architecture: {self.architecture}') | |
# Motion decoder | |
self.motion_dec = nn.Sequential( | |
nn.Linear(self.feature_dim, self.feature_dim // 2), | |
nn.GELU(), | |
nn.Linear(self.feature_dim // 2, self.motion_feat_dim) | |
) | |
self.to(device) | |
def device(self): | |
return next(self.parameters()).device | |
def forward(self, motion_feat, audio_feat, person_feat, prev_motion_feat, prev_audio_feat, step, indicator=None): | |
""" | |
Args: | |
motion_feat: (N, L, d_motion). Noisy motion feature | |
audio_feat: (N, L, feature_dim) | |
person_feat: (N, 1, d_person) | |
prev_motion_feat: (N, L_p, d_motion). Padded previous motion coefficients or feature | |
prev_audio_feat: (N, L_p, d_audio). Padded previous motion coefficients or feature | |
step: (N,) | |
indicator: (N, L). 0/1 indicator for the real (unpadded) motion feature | |
Returns: | |
motion_feat_target: (N, L_p + L, d_motion) | |
""" | |
# Diffusion time step embedding | |
diff_step_embedding = self.diff_step_map(self.TE.pe[0, step]).unsqueeze(1) # (N, 1, diff_step_dim) | |
person_feat = self.person_proj(person_feat) # (N, 1, feature_dim) | |
person_feat = person_feat + diff_step_embedding | |
if indicator is not None: | |
indicator = torch.cat([torch.zeros((indicator.shape[0], self.n_prev_motions), device=indicator.device), | |
indicator], dim=1) # (N, L_p + L) | |
indicator = indicator.unsqueeze(-1) # (N, L_p + L, 1) | |
# Concat features and embeddings | |
if self.architecture == 'decoder': | |
feats_in = torch.cat([prev_motion_feat, motion_feat], dim=1) # (N, L_p + L, d_motion) | |
else: | |
raise ValueError(f'Unknown architecture: {self.architecture}') | |
if self.use_indicator: | |
feats_in = torch.cat([feats_in, indicator], dim=-1) # (N, L_p + L, d_motion + d_audio + 1) | |
feats_in = self.feature_proj(feats_in) # (N, L_p + L, feature_dim) | |
feats_in = torch.cat([person_feat, feats_in], dim=1) # (N, 1 + L_p + L, feature_dim) | |
if self.use_learnable_pe: | |
feats_in = feats_in + self.PE | |
else: | |
feats_in = self.PE(feats_in) | |
# Transformer | |
if self.architecture == 'decoder': | |
audio_feat_in = torch.cat([prev_audio_feat, audio_feat], dim=1) # (N, L_p + L, d_audio) | |
feat_out = self.transformer(feats_in, audio_feat_in, memory_mask=self.alignment_mask) | |
else: | |
raise ValueError(f'Unknown architecture: {self.architecture}') | |
# Decode predicted motion feature noise / sample | |
motion_feat_target = self.motion_dec(feat_out[:, 1:]) # (N, L_p + L, d_motion) | |
return motion_feat_target | |