Spaces:
Running
on
L40S
Running
on
L40S
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, dropout=0.1, max_len=600): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
# vanilla sinusoidal encoding | |
pe = torch.zeros(max_len, d_model) | |
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
x = x + self.pe[:, x.shape[1], :] | |
return self.dropout(x) | |
def enc_dec_mask(T, S, frame_width=2, expansion=0, device='cuda'): | |
mask = torch.ones(T, S) | |
for i in range(T): | |
mask[i, max(0, (i - expansion) * frame_width):(i + expansion + 1) * frame_width] = 0 | |
return (mask == 1).to(device=device) | |
def pad_audio(audio, audio_unit=320, pad_threshold=80): | |
batch_size, audio_len = audio.shape | |
n_units = audio_len // audio_unit | |
side_len = math.ceil((audio_unit * n_units + pad_threshold - audio_len) / 2) | |
if side_len >= 0: | |
reflect_len = side_len // 2 | |
replicate_len = side_len % 2 | |
if reflect_len > 0: | |
audio = F.pad(audio, (reflect_len, reflect_len), mode='reflect') | |
audio = F.pad(audio, (reflect_len, reflect_len), mode='reflect') | |
if replicate_len > 0: | |
audio = F.pad(audio, (1, 1), mode='replicate') | |
return audio | |