Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,490 Bytes
38e20ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import os
import torch
from insightface.app import FaceAnalysis
from insightface.utils import face_align
from PIL import Image
from torchvision import models, transforms
from curricularface import get_model
import cv2
import numpy as np
import numpy
def pad_np_bgr_image(np_image, scale=1.25):
assert scale >= 1.0, "scale should be >= 1.0"
pad_scale = scale - 1.0
h, w = np_image.shape[:2]
top = bottom = int(h * pad_scale)
left = right = int(w * pad_scale)
return cv2.copyMakeBorder(np_image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(128, 128, 128)), (left, top)
def sample_video_frames(video_path,):
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_indices = np.linspace(0, total_frames - 1, total_frames, dtype=int)
frames = []
for idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
# if frame.shape[1] > 1024:
# frame = frame[:, 1440:, :]
# print(frame.shape)
frame = cv2.resize(frame, (720, 480))
# print(frame.shape)
frames.append(frame)
cap.release()
return frames
def get_face_keypoints(face_model, image_bgr):
face_info = face_model.get(image_bgr)
if len(face_info) > 0:
return sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[-1]
return None
def process_image(face_model, image_path):
if isinstance(image_path, str):
np_faceid_image = np.array(Image.open(image_path).convert("RGB"))
elif isinstance(image_path, numpy.ndarray):
np_faceid_image = image_path
else:
raise TypeError("image_path should be a string or PIL.Image.Image object")
image_bgr = cv2.cvtColor(np_faceid_image, cv2.COLOR_RGB2BGR)
face_info = get_face_keypoints(face_model, image_bgr)
if face_info is None:
padded_image, sub_coord = pad_np_bgr_image(image_bgr)
face_info = get_face_keypoints(face_model, padded_image)
if face_info is None:
print("Warning: No face detected in the image. Continuing processing...")
return None
face_kps = face_info['kps']
face_kps -= np.array(sub_coord)
else:
face_kps = face_info['kps']
return face_kps
def process_video(video_path, face_arc_model):
video_frames = sample_video_frames(video_path,)
print(len(video_frames))
kps_list = []
for frame in video_frames:
# Convert to RGB once at the beginning
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
kps = process_image(face_arc_model, frame_rgb)
if kps is None:
return None
# print(kps)
kps_list.append(kps)
return kps_list
def calculate_l1_distance(list1, list2):
"""
计算两个列表的 L1 距离
:param list1: 第一个列表,形状为 (5, 2)
:param list2: 第二个列表,形状为 (5, 2)
:return: L1 距离
"""
# 将列表转换为 NumPy 数组
list1 = np.array(list1)
list2 = np.array(list2)
# 计算每对点的 L1 距离
l1_distances = np.abs(list1 - list2).sum(axis=1)
# 返回所有点的 L1 距离之和
return l1_distances.sum()
def calculate_kps(list1, list2):
distance_list = []
for kps1 in list1:
min_dis = (480 + 720) * 5 + 1
for kps2 in list2:
min_dis = min(min_dis, calculate_l1_distance(kps1, kps2))
distance_list.append(min_dis/(480+720)/10)
return sum(distance_list)/len(distance_list)
def main():
device = "cuda"
# data_path = "data/SkyActor"
# data_path = "data/LivePotraits"
# data_path = "data/Actor-One"
data_path = "data/FollowYourEmoji"
img_path = "/maindata/data/shared/public/rui.wang/act_review/driving_video"
pre_tag = False
mp4_list = os.listdir(data_path)
print(mp4_list)
img_list = []
video_list = []
for mp4 in mp4_list:
if "mp4" not in mp4:
continue
if pre_tag:
png_path = mp4.split('.')[0].split('--')[1] + ".mp4"
else:
if "-" in mp4:
png_path = mp4.split('.')[0].split('-')[0] + ".mp4"
else:
png_path = mp4.split('.')[0].split('_')[0] + ".mp4"
img_list.append(os.path.join(img_path, png_path))
video_list.append(os.path.join(data_path, mp4))
print(img_list)
print(video_list[0])
model_path = "eval"
face_arc_path = os.path.join(model_path, "face_encoder")
face_cur_path = os.path.join(face_arc_path, "glint360k_curricular_face_r101_backbone.bin")
# Initialize FaceEncoder model for face detection and embedding extraction
face_arc_model = FaceAnalysis(root=face_arc_path, providers=['CUDAExecutionProvider'])
face_arc_model.prepare(ctx_id=0, det_size=(320, 320))
expression_list = []
for i in range(len(img_list)):
print("number: ", str(i), " total: ", len(img_list), data_path)
kps_1 = process_video(video_list[i], face_arc_model)
kps_2 = process_video(img_list[i], face_arc_model)
if kps_1 is None or kps_2 is None:
continue
dis = calculate_kps(kps_1, kps_2)
print(dis)
expression_list.append(dis)
# break
print("kps", sum(expression_list)/ len(expression_list))
main()
|