File size: 5,490 Bytes
38e20ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os 
import os 
import torch 
from insightface.app import FaceAnalysis
from insightface.utils import face_align
from PIL import Image
from torchvision import models, transforms
from curricularface import get_model
import cv2
import numpy as np 
import numpy

def pad_np_bgr_image(np_image, scale=1.25):
    assert scale >= 1.0, "scale should be >= 1.0"
    pad_scale = scale - 1.0
    h, w = np_image.shape[:2]
    top = bottom = int(h * pad_scale)
    left = right = int(w * pad_scale)
    return cv2.copyMakeBorder(np_image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(128, 128, 128)), (left, top)


def sample_video_frames(video_path,):
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) 
    frame_indices = np.linspace(0, total_frames - 1, total_frames, dtype=int)

    frames = []
    for idx in frame_indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
        ret, frame = cap.read()
        if ret:
            # if frame.shape[1] > 1024:
                # frame = frame[:, 1440:, :]  
                # print(frame.shape) 
            frame = cv2.resize(frame, (720, 480))
            # print(frame.shape)
            frames.append(frame)
    cap.release()
    return frames


def get_face_keypoints(face_model, image_bgr):
    face_info = face_model.get(image_bgr)
    if len(face_info) > 0:
        return sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[-1]
    return None

def process_image(face_model, image_path):
    if isinstance(image_path, str):
        np_faceid_image = np.array(Image.open(image_path).convert("RGB"))
    elif isinstance(image_path, numpy.ndarray):
        np_faceid_image = image_path
    else:
        raise TypeError("image_path should be a string or PIL.Image.Image object")

    image_bgr = cv2.cvtColor(np_faceid_image, cv2.COLOR_RGB2BGR)

    face_info = get_face_keypoints(face_model, image_bgr)
    if face_info is None:
        padded_image, sub_coord = pad_np_bgr_image(image_bgr)
        face_info = get_face_keypoints(face_model, padded_image)
        if face_info is None:
            print("Warning: No face detected in the image. Continuing processing...")
            return None
        face_kps = face_info['kps']
        face_kps -= np.array(sub_coord)
    else:
        face_kps = face_info['kps']
    return face_kps 

def process_video(video_path, face_arc_model):
    video_frames = sample_video_frames(video_path,)
    print(len(video_frames))
    kps_list = []
    for frame in video_frames:
        # Convert to RGB once at the beginning
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 
        kps = process_image(face_arc_model, frame_rgb)
        if kps is None:
            return None 
        # print(kps)
        kps_list.append(kps) 
    return kps_list 


def calculate_l1_distance(list1, list2):
    """
    计算两个列表的 L1 距离
    :param list1: 第一个列表,形状为 (5, 2)
    :param list2: 第二个列表,形状为 (5, 2)
    :return: L1 距离
    """
    # 将列表转换为 NumPy 数组
    list1 = np.array(list1)
    list2 = np.array(list2)

    # 计算每对点的 L1 距离
    l1_distances = np.abs(list1 - list2).sum(axis=1)

    # 返回所有点的 L1 距离之和
    return l1_distances.sum()


def calculate_kps(list1, list2): 
    distance_list = []
    for kps1 in list1:
        min_dis = (480 + 720) * 5 + 1 
        for kps2 in list2: 
            min_dis = min(min_dis, calculate_l1_distance(kps1, kps2)) 
        distance_list.append(min_dis/(480+720)/10)
    return sum(distance_list)/len(distance_list)


def main():
    device = "cuda" 
    # data_path = "data/SkyActor" 
    # data_path = "data/LivePotraits"
    # data_path = "data/Actor-One"
    data_path = "data/FollowYourEmoji"
    img_path = "/maindata/data/shared/public/rui.wang/act_review/driving_video"
    pre_tag = False 
    mp4_list = os.listdir(data_path) 
    print(mp4_list) 
    
    img_list = []
    video_list = []
    for mp4 in mp4_list:
        if "mp4" not in mp4:
            continue 
        if pre_tag: 
            png_path = mp4.split('.')[0].split('--')[1] + ".mp4" 
        else:
            if "-" in mp4:
                png_path = mp4.split('.')[0].split('-')[0] + ".mp4" 
            else: 
                png_path = mp4.split('.')[0].split('_')[0] + ".mp4" 
        img_list.append(os.path.join(img_path, png_path))
        video_list.append(os.path.join(data_path, mp4))        
    print(img_list)
    print(video_list[0]) 

    model_path = "eval" 
    face_arc_path = os.path.join(model_path, "face_encoder")
    face_cur_path = os.path.join(face_arc_path, "glint360k_curricular_face_r101_backbone.bin") 

    # Initialize FaceEncoder model for face detection and embedding extraction
    face_arc_model = FaceAnalysis(root=face_arc_path, providers=['CUDAExecutionProvider'])
    face_arc_model.prepare(ctx_id=0, det_size=(320, 320))

    expression_list = []
    for i in range(len(img_list)):  
        print("number: ", str(i), " total: ", len(img_list), data_path) 
        kps_1 = process_video(video_list[i], face_arc_model)
        kps_2 = process_video(img_list[i], face_arc_model) 
        if kps_1 is None or kps_2 is None:
            continue 

        dis = calculate_kps(kps_1, kps_2)
        print(dis)
        expression_list.append(dis)
        # break 
    
    print("kps", sum(expression_list)/ len(expression_list))



main()