Spaces:
Running
on
L40S
Running
on
L40S
File size: 9,704 Bytes
38e20ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import torch
from insightface.app import FaceAnalysis
from insightface.utils import face_align
from PIL import Image
from torchvision import models, transforms
from curricularface import get_model
import cv2
import numpy as np
import numpy
def matrix_sqrt(matrix):
eigenvalues, eigenvectors = torch.linalg.eigh(matrix)
sqrt_eigenvalues = torch.sqrt(torch.clamp(eigenvalues, min=0))
sqrt_matrix = (eigenvectors * sqrt_eigenvalues).mm(eigenvectors.T)
return sqrt_matrix
def sample_video_frames(video_path, num_frames=16):
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
frames = []
for idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
# print(frame.shape)
#if frame.shape[1] > 1024:
# frame = frame[:, 1440:, :]
# print(frame.shape)
frames.append(frame)
cap.release()
return frames
def get_face_keypoints(face_model, image_bgr):
face_info = face_model.get(image_bgr)
if len(face_info) > 0:
return sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[-1]
return None
def load_image(image):
img = image.convert('RGB')
img = transforms.Resize((299, 299))(img) # Resize to Inception input size
img = transforms.ToTensor()(img)
return img.unsqueeze(0) # Add batch dimension
def calculate_fid(real_activations, fake_activations, device="cuda"):
real_activations_tensor = torch.tensor(real_activations).to(device)
fake_activations_tensor = torch.tensor(fake_activations).to(device)
mu1 = real_activations_tensor.mean(dim=0)
sigma1 = torch.cov(real_activations_tensor.T)
mu2 = fake_activations_tensor.mean(dim=0)
sigma2 = torch.cov(fake_activations_tensor.T)
ssdiff = torch.sum((mu1 - mu2) ** 2)
covmean = matrix_sqrt(sigma1.mm(sigma2))
if torch.is_complex(covmean):
covmean = covmean.real
fid = ssdiff + torch.trace(sigma1 + sigma2 - 2 * covmean)
return fid.item()
def batch_cosine_similarity(embedding_image, embedding_frames, device="cuda"):
embedding_image = torch.tensor(embedding_image).to(device)
embedding_frames = torch.tensor(embedding_frames).to(device)
return torch.nn.functional.cosine_similarity(embedding_image, embedding_frames, dim=-1).cpu().numpy()
def get_activations(images, model, batch_size=16):
model.eval()
activations = []
with torch.no_grad():
for i in range(0, len(images), batch_size):
batch = images[i:i + batch_size]
pred = model(batch)
activations.append(pred)
activations = torch.cat(activations, dim=0).cpu().numpy()
if activations.shape[0] == 1:
activations = np.repeat(activations, 2, axis=0)
return activations
def pad_np_bgr_image(np_image, scale=1.25):
assert scale >= 1.0, "scale should be >= 1.0"
pad_scale = scale - 1.0
h, w = np_image.shape[:2]
top = bottom = int(h * pad_scale)
left = right = int(w * pad_scale)
return cv2.copyMakeBorder(np_image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(128, 128, 128)), (left, top)
def process_image(face_model, image_path):
if isinstance(image_path, str):
np_faceid_image = np.array(Image.open(image_path).convert("RGB"))
elif isinstance(image_path, numpy.ndarray):
np_faceid_image = image_path
else:
raise TypeError("image_path should be a string or PIL.Image.Image object")
image_bgr = cv2.cvtColor(np_faceid_image, cv2.COLOR_RGB2BGR)
face_info = get_face_keypoints(face_model, image_bgr)
if face_info is None:
padded_image, sub_coord = pad_np_bgr_image(image_bgr)
face_info = get_face_keypoints(face_model, padded_image)
if face_info is None:
print("Warning: No face detected in the image. Continuing processing...")
return None, None
face_kps = face_info['kps']
face_kps -= np.array(sub_coord)
else:
face_kps = face_info['kps']
arcface_embedding = face_info['embedding']
# print(face_kps)
norm_face = face_align.norm_crop(image_bgr, landmark=face_kps, image_size=224)
align_face = cv2.cvtColor(norm_face, cv2.COLOR_BGR2RGB)
return align_face, arcface_embedding
@torch.no_grad()
def inference(face_model, img, device):
img = cv2.resize(img, (112, 112))
img = np.transpose(img, (2, 0, 1))
img = torch.from_numpy(img).unsqueeze(0).float().to(device)
img.div_(255).sub_(0.5).div_(0.5)
embedding = face_model(img).detach().cpu().numpy()[0]
return embedding / np.linalg.norm(embedding)
def process_video(video_path, face_arc_model, face_cur_model, fid_model, arcface_image_embedding, cur_image_embedding, real_activations, device):
video_frames = sample_video_frames(video_path, num_frames=16)
#print(video_frames)
# Initialize lists to store the scores
cur_scores = []
arc_scores = []
fid_face = []
for frame in video_frames:
# Convert to RGB once at the beginning
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Process the frame for ArcFace embeddings
align_face_frame, arcface_frame_embedding = process_image(face_arc_model, frame_rgb)
# Skip if alignment fails
if align_face_frame is None:
continue
# Perform inference for current face model
cur_embedding_frame = inference(face_cur_model, align_face_frame, device)
# Compute cosine similarity for cur_score and arc_score in a compact manner
cur_score = max(0.0, batch_cosine_similarity(cur_image_embedding, cur_embedding_frame, device=device).item())
arc_score = max(0.0, batch_cosine_similarity(arcface_image_embedding, arcface_frame_embedding, device=device).item())
# Process FID score
align_face_frame_pil = Image.fromarray(align_face_frame)
fake_image = load_image(align_face_frame_pil).to(device)
fake_activations = get_activations(fake_image, fid_model)
fid_score = calculate_fid(real_activations, fake_activations, device)
# Collect scores
fid_face.append(fid_score)
cur_scores.append(cur_score)
arc_scores.append(arc_score)
# Aggregate results with default values for empty lists
avg_cur_score = np.mean(cur_scores) if cur_scores else 0.0
avg_arc_score = np.mean(arc_scores) if arc_scores else 0.0
avg_fid_score = np.mean(fid_face) if fid_face else 0.0
return avg_cur_score, avg_arc_score, avg_fid_score
def main():
device = "cuda"
# data_path = "data/SkyActor"
# data_path = "data/LivePotraits"
# data_path = "data/Actor-One"
data_path = "data/FollowYourEmoji"
img_path = "/maindata/data/shared/public/rui.wang/act_review/ref_images"
pre_tag = False
mp4_list = os.listdir(data_path)
print(mp4_list)
img_list = []
video_list = []
for mp4 in mp4_list:
if "mp4" not in mp4:
continue
if pre_tag:
png_path = mp4.split('.')[0].split('-')[0] + ".png"
else:
if "-" in mp4:
png_path = mp4.split('.')[0].split('-')[1] + ".png"
else:
png_path = mp4.split('.')[0].split('_')[1] + ".png"
img_list.append(os.path.join(img_path, png_path))
video_list.append(os.path.join(data_path, mp4))
print(img_list)
print(video_list[0])
model_path = "eval"
face_arc_path = os.path.join(model_path, "face_encoder")
face_cur_path = os.path.join(face_arc_path, "glint360k_curricular_face_r101_backbone.bin")
# Initialize FaceEncoder model for face detection and embedding extraction
face_arc_model = FaceAnalysis(root=face_arc_path, providers=['CUDAExecutionProvider'])
face_arc_model.prepare(ctx_id=0, det_size=(320, 320))
# Load face recognition model
face_cur_model = get_model('IR_101')([112, 112])
face_cur_model.load_state_dict(torch.load(face_cur_path, map_location="cpu"))
face_cur_model = face_cur_model.to(device)
face_cur_model.eval()
# Load InceptionV3 model for FID calculation
fid_model = models.inception_v3(weights=models.Inception_V3_Weights.DEFAULT)
fid_model.fc = torch.nn.Identity() # Remove final classification layer
fid_model.eval()
fid_model = fid_model.to(device)
# Process the single video and image pair
# Extract embeddings and features from the image
cur_list, arc_list, fid_list = [], [], []
for i in range(len(img_list)):
align_face_image, arcface_image_embedding = process_image(face_arc_model, img_list[i])
cur_image_embedding = inference(face_cur_model, align_face_image, device)
align_face_image_pil = Image.fromarray(align_face_image)
real_image = load_image(align_face_image_pil).to(device)
real_activations = get_activations(real_image, fid_model)
# Process the video and calculate scores
cur_score, arc_score, fid_score = process_video(
video_list[i], face_arc_model, face_cur_model, fid_model,
arcface_image_embedding, cur_image_embedding, real_activations, device
)
print(cur_score, arc_score, fid_score)
cur_list.append(cur_score)
arc_list.append(arc_score)
fid_list.append(fid_score)
# break
print("cur", sum(cur_list)/ len(cur_list))
print("arc", sum(arc_list)/ len(arc_list))
print("fid", sum(fid_list)/ len(fid_list))
main()
|