File size: 9,704 Bytes
38e20ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os 
import torch 
from insightface.app import FaceAnalysis
from insightface.utils import face_align
from PIL import Image
from torchvision import models, transforms
from curricularface import get_model
import cv2
import numpy as np 
import numpy


def matrix_sqrt(matrix):
    eigenvalues, eigenvectors = torch.linalg.eigh(matrix)
    sqrt_eigenvalues = torch.sqrt(torch.clamp(eigenvalues, min=0))
    sqrt_matrix = (eigenvectors * sqrt_eigenvalues).mm(eigenvectors.T)
    return sqrt_matrix

def sample_video_frames(video_path, num_frames=16):
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)

    frames = []
    for idx in frame_indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
        ret, frame = cap.read()
        if ret:
            # print(frame.shape)
            #if frame.shape[1] > 1024:
            #    frame = frame[:, 1440:, :]  
                # print(frame.shape)
            frames.append(frame)
    cap.release()
    return frames


def get_face_keypoints(face_model, image_bgr):
    face_info = face_model.get(image_bgr)
    if len(face_info) > 0:
        return sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[-1]
    return None

def load_image(image):
    img = image.convert('RGB')
    img = transforms.Resize((299, 299))(img)  # Resize to Inception input size
    img = transforms.ToTensor()(img)
    return img.unsqueeze(0)  # Add batch dimension

def calculate_fid(real_activations, fake_activations, device="cuda"):
    real_activations_tensor = torch.tensor(real_activations).to(device)
    fake_activations_tensor = torch.tensor(fake_activations).to(device)

    mu1 = real_activations_tensor.mean(dim=0)
    sigma1 = torch.cov(real_activations_tensor.T)
    mu2 = fake_activations_tensor.mean(dim=0)
    sigma2 = torch.cov(fake_activations_tensor.T)

    ssdiff = torch.sum((mu1 - mu2) ** 2)
    covmean = matrix_sqrt(sigma1.mm(sigma2))
    if torch.is_complex(covmean):
        covmean = covmean.real
    fid = ssdiff + torch.trace(sigma1 + sigma2 - 2 * covmean)
    return fid.item()

def batch_cosine_similarity(embedding_image, embedding_frames, device="cuda"):
    embedding_image = torch.tensor(embedding_image).to(device)
    embedding_frames = torch.tensor(embedding_frames).to(device)
    return torch.nn.functional.cosine_similarity(embedding_image, embedding_frames, dim=-1).cpu().numpy()


def get_activations(images, model, batch_size=16):
    model.eval()
    activations = []
    with torch.no_grad():
        for i in range(0, len(images), batch_size):
            batch = images[i:i + batch_size]
            pred = model(batch)
            activations.append(pred)
    activations = torch.cat(activations, dim=0).cpu().numpy()
    if activations.shape[0] == 1:
        activations = np.repeat(activations, 2, axis=0)
    return activations

def pad_np_bgr_image(np_image, scale=1.25):
    assert scale >= 1.0, "scale should be >= 1.0"
    pad_scale = scale - 1.0
    h, w = np_image.shape[:2]
    top = bottom = int(h * pad_scale)
    left = right = int(w * pad_scale)
    return cv2.copyMakeBorder(np_image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(128, 128, 128)), (left, top)


def process_image(face_model, image_path):
    if isinstance(image_path, str):
        np_faceid_image = np.array(Image.open(image_path).convert("RGB"))
    elif isinstance(image_path, numpy.ndarray):
        np_faceid_image = image_path
    else:
        raise TypeError("image_path should be a string or PIL.Image.Image object")

    image_bgr = cv2.cvtColor(np_faceid_image, cv2.COLOR_RGB2BGR)

    face_info = get_face_keypoints(face_model, image_bgr)
    if face_info is None:
        padded_image, sub_coord = pad_np_bgr_image(image_bgr)
        face_info = get_face_keypoints(face_model, padded_image)
        if face_info is None:
            print("Warning: No face detected in the image. Continuing processing...")
            return None, None
        face_kps = face_info['kps']
        face_kps -= np.array(sub_coord)
    else:
        face_kps = face_info['kps']
    arcface_embedding = face_info['embedding']
    # print(face_kps)
    norm_face = face_align.norm_crop(image_bgr, landmark=face_kps, image_size=224)
    align_face = cv2.cvtColor(norm_face, cv2.COLOR_BGR2RGB)

    return align_face, arcface_embedding

@torch.no_grad()
def inference(face_model, img, device):
    img = cv2.resize(img, (112, 112))
    img = np.transpose(img, (2, 0, 1))
    img = torch.from_numpy(img).unsqueeze(0).float().to(device)
    img.div_(255).sub_(0.5).div_(0.5)
    embedding = face_model(img).detach().cpu().numpy()[0]
    return embedding / np.linalg.norm(embedding)


def process_video(video_path, face_arc_model, face_cur_model, fid_model, arcface_image_embedding, cur_image_embedding, real_activations, device):
    video_frames = sample_video_frames(video_path, num_frames=16)
    #print(video_frames)
    # Initialize lists to store the scores
    cur_scores = []
    arc_scores = []
    fid_face = []

    for frame in video_frames:
        # Convert to RGB once at the beginning
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        # Process the frame for ArcFace embeddings
        align_face_frame, arcface_frame_embedding = process_image(face_arc_model, frame_rgb)

        # Skip if alignment fails
        if align_face_frame is None:
            continue

        # Perform inference for current face model
        cur_embedding_frame = inference(face_cur_model, align_face_frame, device)

        # Compute cosine similarity for cur_score and arc_score in a compact manner
        cur_score = max(0.0, batch_cosine_similarity(cur_image_embedding, cur_embedding_frame, device=device).item())
        arc_score = max(0.0, batch_cosine_similarity(arcface_image_embedding, arcface_frame_embedding, device=device).item())

        # Process FID score
        align_face_frame_pil = Image.fromarray(align_face_frame)
        fake_image = load_image(align_face_frame_pil).to(device)
        fake_activations = get_activations(fake_image, fid_model)
        fid_score = calculate_fid(real_activations, fake_activations, device)

        # Collect scores
        fid_face.append(fid_score)
        cur_scores.append(cur_score)
        arc_scores.append(arc_score)

    # Aggregate results with default values for empty lists
    avg_cur_score = np.mean(cur_scores) if cur_scores else 0.0
    avg_arc_score = np.mean(arc_scores) if arc_scores else 0.0
    avg_fid_score = np.mean(fid_face) if fid_face else 0.0

    return avg_cur_score, avg_arc_score, avg_fid_score



def main():
    device = "cuda" 
    # data_path = "data/SkyActor" 
    # data_path = "data/LivePotraits"
    # data_path = "data/Actor-One"
    data_path = "data/FollowYourEmoji"
    img_path = "/maindata/data/shared/public/rui.wang/act_review/ref_images"
    pre_tag = False 
    mp4_list = os.listdir(data_path) 
    print(mp4_list) 
    
    img_list = []
    video_list = []
    for mp4 in mp4_list:
        if "mp4" not in mp4:
            continue 
        if pre_tag: 
            png_path = mp4.split('.')[0].split('-')[0] + ".png" 
        else:
            if "-" in mp4:
                png_path = mp4.split('.')[0].split('-')[1] + ".png" 
            else: 
                png_path = mp4.split('.')[0].split('_')[1] + ".png" 
        img_list.append(os.path.join(img_path, png_path))
        video_list.append(os.path.join(data_path, mp4))        
    print(img_list)
    print(video_list[0])

    model_path = "eval" 
    face_arc_path = os.path.join(model_path, "face_encoder")
    face_cur_path = os.path.join(face_arc_path, "glint360k_curricular_face_r101_backbone.bin") 

    # Initialize FaceEncoder model for face detection and embedding extraction
    face_arc_model = FaceAnalysis(root=face_arc_path, providers=['CUDAExecutionProvider'])
    face_arc_model.prepare(ctx_id=0, det_size=(320, 320))

    # Load face recognition model
    face_cur_model = get_model('IR_101')([112, 112])
    face_cur_model.load_state_dict(torch.load(face_cur_path, map_location="cpu"))
    face_cur_model = face_cur_model.to(device)
    face_cur_model.eval()

    # Load InceptionV3 model for FID calculation
    fid_model = models.inception_v3(weights=models.Inception_V3_Weights.DEFAULT)
    fid_model.fc = torch.nn.Identity()  # Remove final classification layer
    fid_model.eval()
    fid_model = fid_model.to(device) 

    # Process the single video and image pair
    # Extract embeddings and features from the image 
    cur_list, arc_list, fid_list = [], [], []
    for i in range(len(img_list)): 
        align_face_image, arcface_image_embedding = process_image(face_arc_model, img_list[i]) 

        cur_image_embedding = inference(face_cur_model, align_face_image, device)
        align_face_image_pil = Image.fromarray(align_face_image)
        real_image = load_image(align_face_image_pil).to(device)
        real_activations = get_activations(real_image, fid_model)

        # Process the video and calculate scores
        cur_score, arc_score, fid_score = process_video(
            video_list[i], face_arc_model, face_cur_model, fid_model,
            arcface_image_embedding, cur_image_embedding, real_activations, device
        )
        print(cur_score, arc_score, fid_score)
        cur_list.append(cur_score)
        arc_list.append(arc_score)
        fid_list.append(fid_score)
        # break  
    print("cur", sum(cur_list)/ len(cur_list))
    print("arc", sum(arc_list)/ len(arc_list))
    print("fid", sum(fid_list)/ len(fid_list))



main()