File size: 10,632 Bytes
38e20ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import math
import tempfile
import warnings
from pathlib import Path

import cv2
import librosa
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
from pydantic import BaseModel

from .diff_talking_head import DiffTalkingHead
from .utils import NullableArgs, coef_dict_to_vertices, get_coef_dict
from .utils.media import combine_video_and_audio, convert_video, reencode_audio

warnings.filterwarnings('ignore', message='PySoundFile failed. Trying audioread instead.')

class DiffPoseTalkConfig(BaseModel):
    no_context_audio_feat: bool = False
    model_path: str = "pretrained_models/diffposetalk/iter_0110000.pt" # DPT/head-SA-hubert-WM
    coef_stats: str = "pretrained_models/diffposetalk/stats_train.npz"
    style_path: str = "pretrained_models/diffposetalk/style/L4H4-T0.1-BS32/iter_0034000/normal.npy"
    dynamic_threshold_ratio: float = 0.99
    dynamic_threshold_min: float = 1.0
    dynamic_threshold_max: float = 4.0
    scale_audio: float = 1.15
    scale_style: float = 3.0

class DiffPoseTalk:
    def __init__(self, config: DiffPoseTalkConfig = DiffPoseTalkConfig(), device="cuda"):
        self.cfg = config
        self.device = device

        self.no_context_audio_feat = self.cfg.no_context_audio_feat
        model_data = torch.load(self.cfg.model_path, map_location=self.device)

        self.model_args = NullableArgs(model_data['args'])
        self.model = DiffTalkingHead(self.model_args, self.device)
        model_data['model'].pop('denoising_net.TE.pe')
        self.model.load_state_dict(model_data['model'], strict=False)
        self.model.to(self.device)
        self.model.eval()

        self.use_indicator = self.model_args.use_indicator
        self.rot_repr = self.model_args.rot_repr
        self.predict_head_pose = not self.model_args.no_head_pose
        if self.model.use_style:
            style_dir = Path(self.model_args.style_enc_ckpt)
            style_dir = Path(*style_dir.with_suffix('').parts[-3::2])
            self.style_dir = style_dir

        # sequence
        self.n_motions = self.model_args.n_motions
        self.n_prev_motions = self.model_args.n_prev_motions
        self.fps = self.model_args.fps
        self.audio_unit = 16000. / self.fps  # num of samples per frame
        self.n_audio_samples = round(self.audio_unit * self.n_motions)
        self.pad_mode = self.model_args.pad_mode

        self.coef_stats = dict(np.load(self.cfg.coef_stats))
        self.coef_stats = {k: torch.from_numpy(v).to(self.device) for k, v in self.coef_stats.items()}

        if self.cfg.dynamic_threshold_ratio > 0:
            self.dynamic_threshold = (self.cfg.dynamic_threshold_ratio, self.cfg.dynamic_threshold_min,
                                      self.cfg.dynamic_threshold_max)
        else:
            self.dynamic_threshold = None


    def infer_from_file(self, audio_path, shape_coef):
        n_repetitions = 1
        cfg_mode = None
        cfg_cond = self.model.guiding_conditions
        cfg_scale = []
        for cond in cfg_cond:
            if cond == 'audio':
                cfg_scale.append(self.cfg.scale_audio)
            elif cond == 'style':
                cfg_scale.append(self.cfg.scale_style)

        coef_dict = self.infer_coeffs(audio_path, shape_coef, self.cfg.style_path, n_repetitions,
                                      cfg_mode, cfg_cond, cfg_scale, include_shape=True)
        return coef_dict

    @torch.no_grad()
    def infer_coeffs(self, audio, shape_coef, style_feat=None, n_repetitions=1,
                     cfg_mode=None, cfg_cond=None, cfg_scale=1.15, include_shape=False):
        # Returns dict[str, (n_repetitions, L, *)]
        # Step 1: Preprocessing
        # Preprocess audio
        if isinstance(audio, (str, Path)):
            audio, _ = librosa.load(audio, sr=16000, mono=True)
        if isinstance(audio, np.ndarray):
            audio = torch.from_numpy(audio).to(self.device)
        assert audio.ndim == 1, 'Audio must be 1D tensor.'
        audio_mean, audio_std = torch.mean(audio), torch.std(audio)
        audio = (audio - audio_mean) / (audio_std + 1e-5)

        # Preprocess shape coefficient
        if isinstance(shape_coef, (str, Path)):
            shape_coef = np.load(shape_coef)
            if not isinstance(shape_coef, np.ndarray):
                shape_coef = shape_coef['shape']
        if isinstance(shape_coef, np.ndarray):
            shape_coef = torch.from_numpy(shape_coef).float().to(self.device)
        assert shape_coef.ndim <= 2, 'Shape coefficient must be 1D or 2D tensor.'
        if shape_coef.ndim > 1:
            # use the first frame as the shape coefficient
            shape_coef = shape_coef[0]
        original_shape_coef = shape_coef.clone()
        if self.coef_stats is not None:
            shape_coef = (shape_coef - self.coef_stats['shape_mean']) / self.coef_stats['shape_std']
        shape_coef = shape_coef.unsqueeze(0).expand(n_repetitions, -1)

        # Preprocess style feature if given
        if style_feat is not None:
            assert self.model.use_style
            if isinstance(style_feat, (str, Path)):
                style_feat = Path(style_feat)
                if not style_feat.exists() and not style_feat.is_absolute():
                    style_feat = style_feat.parent / self.style_dir / style_feat.name
                style_feat = np.load(style_feat)
                if not isinstance(style_feat, np.ndarray):
                    style_feat = style_feat['style']
            if isinstance(style_feat, np.ndarray):
                style_feat = torch.from_numpy(style_feat).float().to(self.device)
            assert style_feat.ndim == 1, 'Style feature must be 1D tensor.'
            style_feat = style_feat.unsqueeze(0).expand(n_repetitions, -1)

        # Step 2: Predict motion coef
        # divide into synthesize units and do synthesize
        clip_len = int(len(audio) / 16000 * self.fps)
        stride = self.n_motions
        if clip_len <= self.n_motions:
            n_subdivision = 1
        else:
            n_subdivision = math.ceil(clip_len / stride)

        # Prepare audio input
        n_padding_audio_samples = self.n_audio_samples * n_subdivision - len(audio)
        n_padding_frames = math.ceil(n_padding_audio_samples / self.audio_unit)
        if n_padding_audio_samples > 0:
            if self.pad_mode == 'zero':
                padding_value = 0
            elif self.pad_mode == 'replicate':
                padding_value = audio[-1]
            else:
                raise ValueError(f'Unknown pad mode: {self.pad_mode}')
            audio = F.pad(audio, (0, n_padding_audio_samples), value=padding_value)

        if not self.no_context_audio_feat:
            audio_feat = self.model.extract_audio_feature(audio.unsqueeze(0), self.n_motions * n_subdivision)

        # Generate `self.n_motions` new frames at one time, and use the last `self.n_prev_motions` frames
        # from the previous generation as the initial motion condition
        coef_list = []
        for i in range(0, n_subdivision):
            start_idx = i * stride
            end_idx = start_idx + self.n_motions
            indicator = torch.ones((n_repetitions, self.n_motions)).to(self.device) if self.use_indicator else None
            if indicator is not None and i == n_subdivision - 1 and n_padding_frames > 0:
                indicator[:, -n_padding_frames:] = 0
            if not self.no_context_audio_feat:
                audio_in = audio_feat[:, start_idx:end_idx].expand(n_repetitions, -1, -1)
            else:
                audio_in = audio[round(start_idx * self.audio_unit):round(end_idx * self.audio_unit)].unsqueeze(0)

            # generate motion coefficients
            if i == 0:
                # -> (N, L, d_motion=n_code_per_frame * code_dim)
                motion_feat, noise, prev_audio_feat = self.model.sample(audio_in, shape_coef, style_feat,
                                                                        indicator=indicator, cfg_mode=cfg_mode,
                                                                        cfg_cond=cfg_cond, cfg_scale=cfg_scale,
                                                                        dynamic_threshold=self.dynamic_threshold)
            else:
                motion_feat, noise, prev_audio_feat = self.model.sample(audio_in, shape_coef, style_feat,
                                                                        prev_motion_feat, prev_audio_feat, noise,
                                                                        indicator=indicator, cfg_mode=cfg_mode,
                                                                        cfg_cond=cfg_cond, cfg_scale=cfg_scale,
                                                                        dynamic_threshold=self.dynamic_threshold)
            prev_motion_feat = motion_feat[:, -self.n_prev_motions:].clone()
            prev_audio_feat = prev_audio_feat[:, -self.n_prev_motions:]

            motion_coef = motion_feat
            if i == n_subdivision - 1 and n_padding_frames > 0:
                motion_coef = motion_coef[:, :-n_padding_frames]  # delete padded frames
            coef_list.append(motion_coef)

        motion_coef = torch.cat(coef_list, dim=1)

        # Step 3: restore to coef dict
        coef_dict = get_coef_dict(motion_coef, None, self.coef_stats, self.predict_head_pose, self.rot_repr)
        if include_shape:
            coef_dict['shape'] = original_shape_coef[None, None].expand(n_repetitions, motion_coef.shape[1], -1)
        return self.coef_to_a1_format(coef_dict)

    def coef_to_a1_format(self, coef_dict):
        n_frames = coef_dict['exp'].shape[1]
        new_coef_dict = []
        for i in range(n_frames):

            new_coef_dict.append({
                "expression_params": coef_dict["exp"][0, i:i+1],
                "jaw_params": coef_dict["pose"][0, i:i+1, 3:],
                "eye_pose_params": torch.zeros(1, 6).type_as(coef_dict["pose"]),
                "pose_params": coef_dict["pose"][0, i:i+1, :3],
                "eyelid_params": None
            })
        return new_coef_dict
        




    @staticmethod
    def _pad_coef(coef, n_frames, elem_ndim=1):
        if coef.ndim == elem_ndim:
            coef = coef[None]
        elem_shape = coef.shape[1:]
        if coef.shape[0] >= n_frames:
            new_coef = coef[:n_frames]
        else:
            # repeat the last coef frame
            new_coef = torch.cat([coef, coef[[-1]].expand(n_frames - coef.shape[0], *elem_shape)], dim=0)
        return new_coef  # (n_frames, *elem_shape)