Spaces:
Sleeping
Sleeping
import argparse | |
import torch | |
import torch.nn.functional as F | |
import coremltools as ct | |
from torch import Tensor | |
from torch import nn | |
from typing import Dict | |
from typing import Optional | |
from ane_transformers.reference.layer_norm import LayerNormANE as LayerNormANEBase | |
from coremltools.models.neural_network.quantization_utils import quantize_weights | |
from whisper.model import Whisper, AudioEncoder, TextDecoder, ResidualAttentionBlock, MultiHeadAttention, ModelDimensions | |
from whisper import load_model | |
# Use for changing dim of input in encoder and decoder embeddings | |
def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict, | |
missing_keys, unexpected_keys, error_msgs): | |
""" | |
Unsqueeze twice to map nn.Linear weights to nn.Conv2d weights | |
""" | |
for k in state_dict: | |
is_attention = all(substr in k for substr in ['attn', '.weight']) | |
is_mlp = any(k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight']) | |
if (is_attention or is_mlp) and len(state_dict[k].shape) == 2: | |
state_dict[k] = state_dict[k][:, :, None, None] | |
def correct_for_bias_scale_order_inversion(state_dict, prefix, local_metadata, | |
strict, missing_keys, | |
unexpected_keys, error_msgs): | |
state_dict[prefix + 'bias'] = state_dict[prefix + 'bias'] / state_dict[prefix + 'weight'] | |
return state_dict | |
class LayerNormANE(LayerNormANEBase): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self._register_load_state_dict_pre_hook( | |
correct_for_bias_scale_order_inversion) | |
class MultiHeadAttentionANE(MultiHeadAttention): | |
def __init__(self, n_state: int, n_head: int): | |
super().__init__(n_state, n_head) | |
self.query = nn.Conv2d(n_state, n_state, kernel_size=1) | |
self.key = nn.Conv2d(n_state, n_state, kernel_size=1, bias=False) | |
self.value = nn.Conv2d(n_state, n_state, kernel_size=1) | |
self.out = nn.Conv2d(n_state, n_state, kernel_size=1) | |
def forward(self, | |
x: Tensor, | |
xa: Optional[Tensor] = None, | |
mask: Optional[Tensor] = None, | |
kv_cache: Optional[dict] = None): | |
q = self.query(x) | |
if kv_cache is None or xa is None or self.key not in kv_cache: | |
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; | |
# otherwise, perform key/value projections for self- or cross-attention as usual. | |
k = self.key(x if xa is None else xa) | |
v = self.value(x if xa is None else xa) | |
else: | |
# for cross-attention, calculate keys and values once and reuse in subsequent calls. | |
k = kv_cache[self.key] | |
v = kv_cache[self.value] | |
wv, qk = self.qkv_attention_ane(q, k, v, mask) | |
return self.out(wv), qk | |
def qkv_attention_ane(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None): | |
_, dim, _, seqlen = q.size() | |
dim_per_head = dim // self.n_head | |
scale = float(dim_per_head)**-0.5 | |
q = q * scale | |
mh_q = q.split(dim_per_head, dim=1) | |
mh_k = k.transpose(1,3).split(dim_per_head, dim=3) | |
mh_v = v.split(dim_per_head, dim=1) | |
mh_qk = [ | |
torch.einsum('bchq,bkhc->bkhq', [qi, ki]) | |
for qi, ki in zip(mh_q, mh_k) | |
] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads | |
if mask is not None: | |
for head_idx in range(self.n_head): | |
mh_qk[head_idx] = mh_qk[head_idx] + mask[:, :seqlen, :, :seqlen] | |
attn_weights = [aw.softmax(dim=1) for aw in mh_qk] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads | |
attn = [torch.einsum('bkhq,bchk->bchq', wi, vi) for wi, vi in zip(attn_weights, mh_v)] # (batch_size, dim_per_head, 1, max_seq_length) * n_heads | |
attn = torch.cat(attn, dim=1) # (batch_size, dim, 1, max_seq_length) | |
return attn, torch.cat(mh_qk, dim=1).float().detach() | |
class ResidualAttentionBlockANE(ResidualAttentionBlock): | |
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): | |
super().__init__(n_state, n_head, cross_attention) | |
self.attn = MultiHeadAttentionANE(n_state, n_head) | |
self.attn_ln = LayerNormANE(n_state) | |
self.cross_attn = MultiHeadAttentionANE(n_state, n_head) if cross_attention else None | |
self.cross_attn_ln = LayerNormANE(n_state) if cross_attention else None | |
n_mlp = n_state * 4 | |
self.mlp = nn.Sequential( | |
nn.Conv2d(n_state, n_mlp, kernel_size=1), | |
nn.GELU(), | |
nn.Conv2d(n_mlp, n_state, kernel_size=1) | |
) | |
self.mlp_ln = LayerNormANE(n_state) | |
class AudioEncoderANE(AudioEncoder): | |
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): | |
super().__init__(n_mels, n_ctx, n_state, n_head, n_layer) | |
self.blocks = nn.ModuleList( | |
[ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)] | |
) | |
self.ln_post = LayerNormANE(n_state) | |
def forward(self, x: Tensor): | |
""" | |
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) | |
the mel spectrogram of the audio | |
""" | |
x = F.gelu(self.conv1(x)) | |
x = F.gelu(self.conv2(x)) | |
assert x.shape[1:] == self.positional_embedding.shape[::-1], "incorrect audio shape" | |
# Add positional embedding and add dummy dim for ANE | |
x = (x + self.positional_embedding.transpose(0,1)).to(x.dtype).unsqueeze(2) | |
for block in self.blocks: | |
x = block(x) | |
x = self.ln_post(x) | |
x = x.squeeze(2).transpose(1, 2) | |
return x | |
class TextDecoderANE(TextDecoder): | |
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): | |
super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer) | |
self.blocks= nn.ModuleList( | |
[ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)] | |
) | |
self.ln= LayerNormANE(n_state) | |
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): | |
""" | |
x : torch.LongTensor, shape = (batch_size, <= n_ctx) | |
the text tokens | |
xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx) | |
the encoded audio features to be attended on | |
""" | |
offset = next(iter(kv_cache.values())).shape[3] if kv_cache else 0 | |
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]] | |
x = x.to(xa.dtype) | |
# Reformat for ANE | |
mask = self.mask[None, None, :, :].permute(0,3,1,2) | |
x = x.transpose(1,2).unsqueeze(2) | |
for block in self.blocks: | |
x = block(x, xa, mask=mask, kv_cache=kv_cache) | |
x = self.ln(x) | |
# Reformat back from ANE | |
x = x.permute(0,2,3,1).squeeze(0) | |
# ANE can only load tensors with dim size of at most 16,384 - whisper uses 51,864 (en) or 51,865 (multi-lang) tokens so we need to compute in chunks | |
if self.token_embedding.weight.shape[0] >= 51865: | |
# split in 11 chunks - 4715 each | |
splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//11, dim=0) | |
logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1) | |
else: | |
# split in 12 chunks - 4322 each | |
assert(self.token_embedding.weight.shape[0] == 51864) | |
splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//12, dim=0) | |
logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1) | |
return logits | |
class WhisperANE(Whisper): | |
def __init__(self, dims: ModelDimensions): | |
super().__init__(dims) | |
self.encoder = AudioEncoderANE( | |
self.dims.n_mels, | |
self.dims.n_audio_ctx, | |
self.dims.n_audio_state, | |
self.dims.n_audio_head, | |
self.dims.n_audio_layer, | |
) | |
self.decoder = TextDecoderANE( | |
self.dims.n_vocab, | |
self.dims.n_text_ctx, | |
self.dims.n_text_state, | |
self.dims.n_text_head, | |
self.dims.n_text_layer, | |
) | |
self._register_load_state_dict_pre_hook(linear_to_conv2d_map) | |
def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]: | |
return self.decoder(tokens, self.encoder(mel)) | |
def install_kv_cache_hooks(self, cache: Optional[dict] = None): | |
cache = {**cache} if cache is not None else {} | |
hooks = [] | |
def save_to_cache(module, _, output): | |
if module not in cache or output.shape[3] > self.decoder.positional_embedding.shape[0]: | |
cache[module] = output # save as-is, for the first token or cross attention | |
else: | |
cache[module] = torch.cat([cache[module], output], dim=3).detach() | |
return cache[module] | |
def install_hooks(layer: nn.Module): | |
if isinstance(layer, MultiHeadAttentionANE): | |
hooks.append(layer.key.register_forward_hook(save_to_cache)) | |
hooks.append(layer.value.register_forward_hook(save_to_cache)) | |
self.decoder.apply(install_hooks) | |
return cache, hooks | |
def convert_encoder(hparams, model, quantize=False): | |
model.eval() | |
input_shape = (1, hparams.n_mels, 3000) | |
input_data = torch.randn(input_shape) | |
traced_model = torch.jit.trace(model, input_data) | |
model = ct.convert( | |
traced_model, | |
convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why | |
inputs=[ct.TensorType(name="logmel_data", shape=input_shape)], | |
outputs=[ct.TensorType(name="output")], | |
compute_units=ct.ComputeUnit.ALL | |
) | |
if quantize: | |
model = quantize_weights(model, nbits=16) | |
return model | |
def convert_decoder(hparams, model, quantize=False): | |
model.eval() | |
tokens_shape = (1, 1) | |
audio_shape = (1, hparams.n_audio_state, 1, 1500) | |
audio_data = torch.randn(audio_shape) | |
token_data = torch.randint(50257, tokens_shape).long() | |
traced_model = torch.jit.trace(model, (token_data, audio_data)) | |
model = ct.convert( | |
traced_model, | |
convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why | |
inputs=[ | |
ct.TensorType(name="token_data", shape=tokens_shape, dtype=int), | |
ct.TensorType(name="audio_data", shape=audio_shape) | |
] | |
) | |
if quantize: | |
model = quantize_weights(model, nbits=16) | |
return model | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3)", required=True) | |
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False) | |
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False) | |
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False) | |
args = parser.parse_args() | |
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "small.en-tdrz", "medium", "medium.en", "large-v1", "large-v2", "large-v3"]: | |
raise ValueError("Invalid model name") | |
whisper = load_model(args.model).cpu() | |
hparams = whisper.dims | |
print(hparams) | |
if args.optimize_ane: | |
whisperANE = WhisperANE(hparams).eval() | |
whisperANE.load_state_dict(whisper.state_dict()) | |
encoder = whisperANE.encoder | |
decoder = whisperANE.decoder | |
else: | |
encoder = whisper.encoder | |
decoder = whisper.decoder | |
# Convert encoder | |
encoder = convert_encoder(hparams, encoder, quantize=args.quantize) | |
encoder.save(f"models/coreml-encoder-{args.model}.mlpackage") | |
if args.encoder_only is False: | |
# Convert decoder | |
decoder = convert_decoder(hparams, decoder, quantize=args.quantize) | |
decoder.save(f"models/coreml-decoder-{args.model}.mlpackage") | |
print("done converting") | |