File size: 93,359 Bytes
613af8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
#include <ggml.h>
#include <ggml-alloc.h>
#include <ggml-backend.h>

#include <algorithm>
#include <array>
#include <cfloat>
#include <cstring>
#include <functional>
#include <memory>
#include <random>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <thread>
#include <vector>


static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
    // static RNG initialization (revisit if n_threads stops being constant)
    static const size_t n_threads = std::thread::hardware_concurrency();
    static std::vector<std::default_random_engine> generators = []() {
        std::random_device rd;
        std::vector<std::default_random_engine> vec;
        vec.reserve(n_threads);
        //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
        for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
        return vec;
    }();

    size_t size = ggml_nelements(tensor);
    std::vector<float> data(size);

    auto init_thread = [&](size_t ith, size_t start, size_t end) {
        std::uniform_real_distribution<float> distribution(min, max);
        for (size_t i = start; i < end; i++) {
            data[i] = distribution(generators[ith]);
        }
    };

    std::vector<std::thread> threads;
    threads.reserve(n_threads);
    for (size_t i = 0; i < n_threads; i++) {
        size_t start =     i*size/n_threads;
        size_t end   = (i+1)*size/n_threads;
        threads.emplace_back(init_thread, i, start, end);
    }
    for (auto & t : threads) {
        t.join();
    }

#if 0
    const char * val_str = getenv("GGML_TEST_EPS");
    float val = 1e-9f;
    if (val_str != nullptr) {
        val = std::stof(val_str);
        printf("GGML_TEST_EPS=%e\n", val);
    }

    // test quantization with very small values that may result in nan scales due to division by zero
    if (ggml_is_quantized(tensor->type)) {
        for (int i = 0; i < 256; i++) {
            data[i] = val;
        }
    }
#endif

    if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
        ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
    } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
        GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
        std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
        std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
        const float * im = imatrix.data();
        if (!ggml_quantize_requires_imatrix(tensor->type)) {
            // when the imatrix is optional, we want to test both quantization with and without imatrix
            // use one of the random numbers to decide
            if (data[0] > 0.5f*(min + max)) {
                im = nullptr;
            }
        }

        ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
        GGML_ASSERT(ggml_validate_row_data(tensor->type, dataq.data(), dataq.size()));
        // TODO: other cases
        //#pragma omp parallel for
        //for (int i = 0; i < tensor->ne[1]; i++) {
        //    ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
        //        i * tensor->ne[0], 1, tensor->ne[0], im);
        //}

        ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
    } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
        // This is going to create some weird integers though.
        ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
    } else {
        GGML_ABORT("fatal error");
    }
}

static std::vector<float> tensor_to_float(const ggml_tensor * t) {
    std::vector<float> tv;
    tv.reserve(ggml_nelements(t));

    std::vector<uint8_t> buf(ggml_nbytes(t));
    ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));

    ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
    size_t bs = ggml_blck_size(t->type);
    std::vector<float> vq(ggml_blck_size(t->type));
    bool quantized = ggml_is_quantized(t->type);

    // access elements by index to avoid gaps in views
    for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
        for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
            for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
                for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
                    size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
                    if (t->type == GGML_TYPE_F16) {
                        tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
                    } else if (t->type == GGML_TYPE_BF16) {
                        tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
                    } else if (t->type == GGML_TYPE_F32) {
                        tv.push_back(*(float *) &buf[i]);
                    } else if (t->type == GGML_TYPE_I32) {
                        tv.push_back((float)*(int32_t *) &buf[i]);
                    } else if (t->type == GGML_TYPE_I16) {
                        tv.push_back((float)*(int16_t *) &buf[i]);
                    } else if (t->type == GGML_TYPE_I8) {
                        tv.push_back((float)*(int8_t *) &buf[i]);
                    } else if (quantized) {
                        tt.to_float(&buf[i], vq.data(), bs);
                        tv.insert(tv.end(), vq.begin(), vq.end());
                    } else {
                        GGML_ABORT("fatal error");
                    }
                }
            }
        }
    }

    return tv;
}

/*
static double cosine_similarity(const float * v1, const float * v2, size_t n) {
    double dot = 0.0;
    double mag1 = 0.0;
    double mag2 = 0.0;

    for (size_t i = 0; i < n; i++) {
        if (std::isnan(v1[i]) || std::isnan(v2[i])) {
            return -1.0f;
        }
        if (std::isinf(v1[i]) && std::isinf(v2[i])) {
            continue;
        }
        dot  += v1[i]*v2[i];
        mag1 += v1[i]*v1[i];
        mag2 += v2[i]*v2[i];
    }

    return dot/sqrt(mag1*mag2);
}

static float distance(const float * v1, const float * v2, size_t n) {
    double d = 0.0;

    for (size_t i = 0; i < n; i++) {
        if (std::isnan(v1[i]) || std::isnan(v2[i])) {
            return INFINITY;
        }
        if (std::isinf(v1[i]) && std::isinf(v2[i])) {
            continue;
        }
        d += (v1[i] - v2[i])*(v1[i] - v2[i]);
    }

    return sqrt(d);
}

static float vec_len(const float * v, size_t n) {
    double d = 0.0;

    for (size_t i = 0; i < n; i++) {
        if (std::isnan(v[i])) {
            return INFINITY;
        }
        if (std::isinf(v[i])) {
            continue;
        }
        d += v[i]*v[i];
    }

    return sqrt(d);
}
*/

// normalized mean squared error = mse(a, b) / mse(a, 0)
static double nmse(const float * a, const float * b, size_t n) {
    double mse_a_b = 0.0;
    double mse_a_0 = 0.0;

    for (size_t i = 0; i < n; i++) {
        float a_i = a[i];
        float b_i = b[i];

        mse_a_b += (a_i - b_i) * (a_i - b_i);
        mse_a_0 += a_i * a_i;
    }

    return mse_a_b / mse_a_0;
}

// utils for printing the variables of the test cases
#define VAR_TO_STR(x) (#x "=" + var_to_str(x))

template<typename T>
static std::string var_to_str(const T & x) {
    return std::to_string(x);
}

template<typename T, size_t N>
static std::string var_to_str(const T (&x)[N]) {
    std::string s = "[";
    for (size_t i = 0; i < N; i++) {
        if (i > 0) {
            s += ",";
        }
        s += var_to_str(x[i]);
    }
    s += "]";
    return s;
}

template<typename T, size_t N>
static std::string var_to_str(const std::array<T, N> & x) {
    std::string s = "[";
    for (size_t i = 0; i < N; i++) {
        if (i > 0) {
            s += ",";
        }
        s += var_to_str(x[i]);
    }
    s += "]";
    return s;
}

//static std::string var_to_str(ggml_unary_op unary_op) {
//    return ggml_unary_op_name(unary_op);
//}

static std::string var_to_str(ggml_type type) {
    return ggml_type_name(type);
}

static std::string var_to_str(ggml_op_pool pool) {
    switch (pool) {
        case GGML_OP_POOL_AVG:  return "avg";
        case GGML_OP_POOL_MAX:  return "max";
        default:                return std::to_string(pool);
    }
}

#define VARS_TO_STR1(a) VAR_TO_STR(a)
#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
#define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
#define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
#define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
#define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
#define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)

#ifdef GGML_USE_SYCL
static bool inline _isinf(float f) {
    return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
}
#else
static bool inline _isinf(float f) { return std::isinf(f); }
#endif

// accept FLT_MAX as infinity
static bool isinf_or_max(float f) {
    return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
}

static bool ggml_is_view_op(enum ggml_op op) {
    return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
}

enum test_mode {
    MODE_TEST,
    MODE_PERF,
};

struct test_case {
    virtual ~test_case() {}

    virtual std::string op_desc(ggml_tensor * t) {
        return ggml_op_desc(t);
    }

    virtual std::string vars() {
        return "";
    }

    virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;

    virtual double max_nmse_err() {
        return 1e-7;
    }

    virtual void initialize_tensors(ggml_context * ctx) {
        for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
            init_tensor_uniform(t);
        }
    }

    virtual size_t op_size(ggml_tensor * t) {
        size_t size = ggml_nbytes(t);
        // add source tensors
        for (int i = 0; i < GGML_MAX_SRC; i++) {
            if (t->src[i] != NULL) {
                size += ggml_nbytes(t->src[i]);
            }
        }
        return size;
    }

    ggml_cgraph * gf = nullptr;

    static const int sentinel_size = 1024;

    test_mode mode;

    std::vector<ggml_tensor *> sentinels;

    void add_sentinel(ggml_context * ctx) {
        if (mode == MODE_PERF) {
            return;
        }
        ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
        ggml_format_name(sentinel, "sent_%zu", sentinels.size());
        sentinels.push_back(sentinel);
    }

    // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend

    ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
        ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
        add_sentinel(ctx);
        return t;
    }

    ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
        ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
        add_sentinel(ctx);
        return t;
    }

    ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
        ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
        add_sentinel(ctx);
        return t;
    }

    ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
        ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
        add_sentinel(ctx);
        return t;
    }

    ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
        ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
        add_sentinel(ctx);
        return t;
    }

    bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
        mode = MODE_TEST;

        ggml_init_params params = {
            /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
            /* .mem_base = */ NULL,
            /* .no_alloc = */ true,
        };
        ggml_context * ctx = ggml_init(params);

        gf = ggml_new_graph(ctx);

        // pre-graph sentinel
        add_sentinel(ctx);

        ggml_tensor * out = build_graph(ctx);

        if (op_name != nullptr && op_desc(out) != op_name) {
            //printf("  %s: skipping\n", op_desc(out).c_str());
            ggml_free(ctx);
            return true;
        }

        printf("  %s(%s): ", op_desc(out).c_str(), vars().c_str());
        fflush(stdout);

        // check if the backends support the ops
        bool supported = true;
        for (ggml_backend_t backend : {backend1, backend2}) {
            for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
                if (!ggml_backend_supports_op(backend, t)) {
                    printf("not supported [%s] ", ggml_backend_name(backend));
                    supported = false;
                    break;
                }
            }
        }
        if (!supported) {
            printf("\n");
            ggml_free(ctx);
            return true;
        }

        // post-graph sentinel
        add_sentinel(ctx);

        // allocate
        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
        if (buf == NULL) {
            printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
            ggml_free(ctx);
            return false;
        }

        // build graph
        ggml_build_forward_expand(gf, out);

        // add sentinels as graph nodes so that they are checked in the callback
        for (ggml_tensor * sentinel : sentinels) {
            gf->nodes[gf->n_nodes++] = sentinel;
        }

        // randomize tensors
        initialize_tensors(ctx);

        // compare
        struct callback_userdata {
            bool   ok;
            double max_err;
            ggml_backend_t backend1;
            ggml_backend_t backend2;
        };

        callback_userdata ud {
            true,
            max_nmse_err(),
            backend1,
            backend2
        };

        auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
            callback_userdata * ud = (callback_userdata *) user_data;
            const char * bn1 = ggml_backend_name(ud->backend1);
            const char * bn2 = ggml_backend_name(ud->backend2);

            if (t1->op == GGML_OP_NONE) {
                // sentinels must be unchanged
                std::vector<uint8_t> t1_data(ggml_nbytes(t1));
                std::vector<uint8_t> t2_data(ggml_nbytes(t2));
                ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
                ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));

                if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
                    printf("sentinel mismatch: %s ", t1->name);
                    ud->ok = false;
                    return true;
                }
            }

            std::vector<float> f1 = tensor_to_float(t1);
            std::vector<float> f2 = tensor_to_float(t2);

            for (size_t i = 0; i < f1.size(); i++) {
                // check for nans
                if (std::isnan(f1[i]) || std::isnan(f2[i])) {
                    printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
                    ud->ok = false;
                    return true;
                }
                // check for infs: both must be inf of the same sign, or both must be finite
                if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
                    if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
                        if (std::signbit(f1[i]) != std::signbit(f2[i])) {
                            printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
                            ud->ok = false;
                            return true;
                        }
                    } else {
                        printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
                        ud->ok = false;
                        return true;
                    }
                }
            }

            double err = nmse(f1.data(), f2.data(), f1.size());
            if (err > ud->max_err) {
                printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
                //for (int i = 0; i < (int) f1.size(); i++) {
                //    printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
                //}
                //printf("\n");
                //exit(1);
                ud->ok = false;
            }
            return true;

            GGML_UNUSED(index);
        };

        const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);

        if (!cmp_ok) {
            printf("compare failed ");
        }

        ggml_backend_buffer_free(buf);

        ggml_free(ctx);

        if (ud.ok && cmp_ok) {
            printf("\033[1;32mOK\033[0m\n");
            return true;
        }

        printf("\033[1;31mFAIL\033[0m\n");
        return false;
    }

    bool eval_perf(ggml_backend_t backend, const char * op_name) {
        mode = MODE_PERF;

        static const size_t graph_nodes = 8192;

        ggml_init_params params = {
            /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
            /* .mem_base = */ NULL,
            /* .no_alloc = */ true,
        };
        ggml_context * ctx = ggml_init(params);

        ggml_tensor * out = build_graph(ctx);

        if (op_name != nullptr && op_desc(out) != op_name) {
            //printf("  %s: skipping\n", op_desc(out).c_str());
            ggml_free(ctx);
            return true;
        }

        int len = printf("  %s(%s): ", op_desc(out).c_str(), vars().c_str());
        fflush(stdout);

        // check if backends support op
        if (!ggml_backend_supports_op(backend, out)) {
            printf("not supported\n");
            ggml_free(ctx);
            return true;
        }

        // align while also leaving some margin for variations in parameters
        int align = 20;
        int last = (len + align - 1) / align * align;
        if (last - len < 5) {
            last += align;
        }
        last = std::max(last, 60);
        printf("%*s", last - len, "");

        // allocate
        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
        if (buf == NULL) {
            printf("failed to allocate tensors\n");
            ggml_free(ctx);
            return false;
        }

        // randomize tensors
        initialize_tensors(ctx);

        // build graph
        ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
        ggml_build_forward_expand(gf, out);

        // warmup run
        ggml_backend_graph_compute(backend, gf);

        // duplicate the op
        size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
        int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
        for (int i = 1; i < n_runs; i++) {
            gf->nodes[gf->n_nodes++] = out;
        }

        // calculate memory
        size_t mem = n_runs * op_size(out);
        auto tensor_op_size = [](ggml_tensor * t) {
            size_t size = ggml_nbytes(t);
            // add source tensors
            for (int i = 0; i < GGML_MAX_SRC; i++) {
                if (t->src[i] != NULL) {
                    size += ggml_nbytes(t->src[i]);
                }
            }
            return size;
        };
        for (int i = 0; i < gf->n_nodes; i++) {
            if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
                continue;
            }
            mem += tensor_op_size(gf->nodes[i]);
        }

        // run
        ggml_backend_synchronize(backend);

        int64_t start_time = ggml_time_us();
        ggml_backend_graph_compute(backend, gf);
        ggml_backend_synchronize(backend);
        int64_t end_time = ggml_time_us();
        double time_us = end_time - start_time;

        printf("    %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
            n_runs,
            time_us / n_runs,
            op_size(out) / 1024,
            mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);

        ggml_backend_buffer_free(buf);

        ggml_free(ctx);

        return true;
    }
};

// GGML_OP_UNARY
struct test_unary : public test_case {
    const ggml_unary_op op;
    const ggml_type type;
    const std::array<int64_t, 4> ne_a;
    int v; // view (1 : non-contiguous a)

    std::string vars() override {
        return VARS_TO_STR3(type, ne_a, v);
    }

    test_unary(ggml_unary_op op,
            ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne_a = {128, 10, 10, 10},
            int v = 0)
        : op(op), type(type), ne_a(ne_a), v(v) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a;
        if (v & 1) {
            auto ne = ne_a; ne[0] *= 3;
            a = ggml_new_tensor(ctx, type, 4, ne.data());
            a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
        } else {
            a = ggml_new_tensor(ctx, type, 4, ne_a.data());
        }
        ggml_tensor * out = ggml_unary(ctx, a, op);
        return out;
    }

    void initialize_tensors(ggml_context * ctx) override {
        for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
            // test extended range of values to check for NaNs in GELU
            init_tensor_uniform(t, -150.f, 150.f);
        }
    }
};

// GGML_OP_GET_ROWS
struct test_get_rows : public test_case {
    const ggml_type type;
    const int n; // cols
    const int m; // rows
    const int r; // rows to get
    const int b; // batch size
    const bool v; // view (non-contiguous src1)

    std::string vars() override {
        return VARS_TO_STR6(type, n, m, r, b, v);
    }

    test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
        : type(type), n(n), m(m), r(r), b(b), v(v) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
        ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
        if (v) {
            rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
        }
        ggml_tensor * out = ggml_get_rows(ctx, in, rows);
        return out;
    }

    void initialize_tensors(ggml_context * ctx) override {
        for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
            if (t->type == GGML_TYPE_I32) {
                if (ggml_is_view_op(t->op)) { continue; }
                // rows
                std::vector<int> data(r*b);
                for (int i = 0; i < r*b; i++) {
                    data[i] = rand() % m;
                }
                ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
            } else {
                init_tensor_uniform(t);
            }
        }
    }
};

// GGML_OP_REPEAT
struct test_repeat : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    const std::array<int, 4> nr;

    std::string vars() override {
        return VARS_TO_STR3(type, ne, nr);
    }

    size_t op_size(ggml_tensor * t) override {
        return ggml_nbytes(t) * 2;
    }

    test_repeat(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 10},
            std::array<int, 4> nr = {2, 2, 2, 2})
        : type(type), ne(ne), nr(nr) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
        ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_repeat(ctx, src, target);
        return out;
    }
};

// GGML_OP_DUP
struct test_dup : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    const std::array<int64_t, 4> permute;
    bool _use_permute;

    std::string vars() override {
        std::string v = VARS_TO_STR2(type, ne);
        if (_use_permute) v += "," + VAR_TO_STR(permute);
        return v;
    }

    test_dup(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 20, 1},
            std::array<int64_t, 4> permute = {0, 0, 0, 0})
        : type(type), ne(ne), permute(permute),
            _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
        if (_use_permute) {
            src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
        }
        ggml_tensor * out = ggml_dup(ctx, src);
        return out;
    }
};

// GGML_OP_CPY
struct test_cpy : public test_case {
    const ggml_type type_src;
    const ggml_type type_dst;
    const std::array<int64_t, 4> ne;
    const std::array<int64_t, 4> permute;
    bool _src_use_permute;

    std::string vars() override {
        return VARS_TO_STR4(type_src, type_dst, ne, permute);
    }

    double max_nmse_err() override {
        return 1e-6;
    }

    size_t op_size(ggml_tensor * t) override {
        return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
    }

    test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 1},
            std::array<int64_t, 4> permute = {0, 0, 0, 0})
        : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
          _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
        if (_src_use_permute) {
            src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
        }
        ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
        ggml_tensor * out = ggml_cpy(ctx, src, dst);
        return out;
    }
};

// GGML_OP_CONT
struct test_cont : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;

    std::string vars() override {
        return VARS_TO_STR2(type, ne);
    }

    test_cont(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 1})
        : type(type), ne(ne) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
        src = ggml_transpose(ctx, src);
        ggml_tensor * out = ggml_cont(ctx, src);

        return out;
    }
};

// GGML_OP_ADD
// GGML_OP_MUL
// GGML_OP_DIV
struct test_bin_bcast : public test_case {
    using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
    op_t op;
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    const std::array<int, 4> nr;

    std::string vars() override {
        return VARS_TO_STR3(type, ne, nr);
    }

    size_t op_size(ggml_tensor * t) override {
        return ggml_nbytes(t) * 3;
    }

    test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 1, 1},
            std::array<int, 4> nr = {1, 2, 1, 1})
        : op(op), type(type), ne(ne), nr(nr) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
        ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = op(ctx, a, b);
        return out;
    }

    void initialize_tensors(ggml_context * ctx) override {
        for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
            if (op == ggml_div) {
                // avoid division by zero
                init_tensor_uniform(t, 1.0f, 2.0f);
            } else {
                init_tensor_uniform(t);
            }
        }
    }
};

// GGML_OP_SCALE
struct test_scale : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    float scale;

    std::string vars() override {
        return VARS_TO_STR3(type, ne, scale);
    }

    test_scale(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 10},
            float scale = 2.0f)
        : type(type), ne(ne), scale(scale) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_scale(ctx, a, scale);
        return out;
    }
};

// GGML_OP_NORM
struct test_norm : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    float eps;

    std::string vars() override {
        return VARS_TO_STR3(type, ne, eps);
    }

    test_norm(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {64, 10, 10, 10},
            float eps = 1e-6f)
        : type(type), ne(ne), eps(eps) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_norm(ctx, a, eps);
        return out;
    }
};

// GGML_OP_RMS_NORM
struct test_rms_norm : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    float eps;

    std::string vars() override {
        return VARS_TO_STR3(type, ne, eps);
    }

    test_rms_norm(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {64, 10, 10, 10},
            float eps = 1e-6f)
        : type(type), ne(ne), eps(eps) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
        return out;
    }
};

// GGML_OP_MUL_MAT
struct test_mul_mat : public test_case {
    const ggml_type type_a;
    const ggml_type type_b;
    const int64_t m;
    const int64_t n;
    const int64_t k;
    const std::array<int64_t, 2> bs; // dims 3 and 4
    const std::array<int64_t, 2> nr; // repeat in dims 3 and 4

    std::string vars() override {
        return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
    }

    double max_nmse_err() override {
        return 5e-4;
    }

    size_t op_size(ggml_tensor * t) override {
        size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
        size_t b = ggml_nbytes(t->src[1]) * m;
        size_t c  = ggml_nbytes(t);
        return a + b + c;

        GGML_UNUSED(t);
    }

    test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
            int64_t m = 32, int64_t n = 32, int64_t k = 32,
            std::array<int64_t, 2> bs = {10, 10},
            std::array<int64_t, 2> nr = {2, 2})
        : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        // C^T = A * B^T: (k, m) * (k, n) => (m, n)
        ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0]      , bs[1]);
        ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
        ggml_tensor * out = ggml_mul_mat(ctx, a, b);
        return out;
    }
};

// GGML_OP_MUL_MAT_ID
struct test_mul_mat_id : public test_case {
    const ggml_type type_a;
    const ggml_type type_b;
    const int n_mats;
    const int n_used;
    const bool b; // brodcast b matrix
    const int64_t m;
    const int64_t n;
    const int64_t k;

    std::string vars() override {
        return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
    }

    double max_nmse_err() override {
        return 5e-4;
    }

    size_t op_size(ggml_tensor * t) override {
        size_t a = ggml_nbytes(t->src[2]) * n;
        size_t b = ggml_nbytes(t->src[1]) * m;
        size_t c  = ggml_nbytes(t);
        return a + b + c;

        GGML_UNUSED(t);
    }

    test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
            int n_mats = 8, int n_used = 2, bool b = false,
            int64_t m = 32, int64_t n = 32, int64_t k = 32)
        : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
            m(m), n(n), k(k) {
            GGML_ASSERT(n_used <= n_mats);
        }

    ggml_tensor * build_graph(ggml_context * ctx) override {
        // C^T = A * B^T: (k, m) * (k, n) => (m, n)
        ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
        ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
        if (n_used != n_mats) {
            ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
        }
        ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
        ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
        return out;
    }

    void initialize_tensors(ggml_context * ctx) override {
        std::random_device rd;
        std::default_random_engine rng(rd());
        for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
            if (t->type == GGML_TYPE_I32) {
                if (ggml_is_view_op(t->op)) { continue; }
                // ids
                for (int64_t r = 0; r < ggml_nrows(t); r++) {
                    std::vector<int32_t> data(t->ne[0]);
                    for (int i = 0; i < t->ne[0]; i++) {
                        data[i] = i % n_mats;
                    }
                    std::shuffle(data.begin(), data.end(), rng);
                    ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
                }
            } else {
                init_tensor_uniform(t);
            }
        }
    }
};

// GGML_OP_SQR
struct test_sqr : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;

    std::string vars() override {
        return VARS_TO_STR2(type, ne);
    }

    test_sqr(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 10})
        : type(type), ne(ne) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_sqr(ctx, a);
        return out;
    }
};

// GGML_OP_SQRT
struct test_sqrt : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;

    std::string vars() override {
        return VARS_TO_STR2(type, ne);
    }

    test_sqrt(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 10})
        : type(type), ne(ne) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_sqrt(ctx, a);
        return out;
    }

    void initialize_tensors(ggml_context * ctx) override {
        // fill with positive values
        for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
            init_tensor_uniform(t, 0.0f, 100.0f);
        }
    }
};

// GGML_OP_CLAMP
struct test_clamp : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    float min;
    float max;

    std::string vars() override {
        return VARS_TO_STR4(type, ne, min, max);
    }

    test_clamp(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 10},
            float min = -0.5f, float max = 0.5f)
        : type(type), ne(ne), min(min), max(max) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_clamp(ctx, a, min, max);
        return out;
    }
};

// GGML_OP_DIAG_MASK_INF
struct test_diag_mask_inf : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    const int n_past;

    std::string vars() override {
        return VARS_TO_STR3(type, ne, n_past);
    }

    test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 10},
            int n_past = 5)
        : type(type), ne(ne), n_past(n_past) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
        return out;
    }
};

// GGML_OP_SOFT_MAX
struct test_soft_max : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    const bool mask;
    const float scale;
    const float max_bias;

    std::string vars() override {
        return VARS_TO_STR5(type, ne, mask, scale, max_bias);
    }

    // the 1024 test with bias occasionally fails:
    // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
    virtual double max_nmse_err() override {
        return 1e-6;
    }

    test_soft_max(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 10},
            bool mask = false,
            float scale = 1.0f,
            float max_bias = 0.0f)
        : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * mask = nullptr;
        if (this->mask) {
            mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
        }
        ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
        return out;
    }
};


// GGML_OP_ROPE
struct test_rope : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne_a;
    int n_dims;
    int mode;
    int n_ctx; // used to generate positions
    float fs; // freq_scale
    float ef; // ext_factor
    float af; // attn_factor
    bool ff;
    int v; // view (1 : non-contiguous a)

    std::string vars() override {
        return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
    }

    test_rope(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
            int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0)
        : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a;
        if (v & 1) {
            auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
            a = ggml_new_tensor(ctx, type, 4, ne.data());
            a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
        } else {
            a = ggml_new_tensor(ctx, type, 4, ne_a.data());
        }
        ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
        ggml_tensor * freq = ff ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2) : nullptr;
        ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
        return out;
    }

    void initialize_tensors(ggml_context * ctx) override {
        for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
            if (t->type == GGML_TYPE_I32) {
                // pos
                std::vector<int> data(ne_a[2]);
                for (int i = 0; i < ne_a[2]; i++) {
                    data[i] = rand() % n_ctx;
                }
                ggml_backend_tensor_set(t, data.data(), 0, ne_a[2] * sizeof(int));
            } else {
                if (t->ne[0] == n_dims/2) {
                    // frequency factors in the range [0.9f, 1.1f]
                    init_tensor_uniform(t, 0.9f, 1.1f);
                } else {
                    init_tensor_uniform(t);
                }
            }
        }
    }
};

// GGML_OP_POOL2D
struct test_pool2d : public test_case {
    enum ggml_op_pool pool_type;
    const ggml_type type_input;
    const std::array<int64_t, 4> ne_input;
    // kernel size
    const int k0;
    const int k1;
    // stride
    const int s0;
    const int s1;
    // padding
    const int p0;
    const int p1;

    std::string vars() override {
        return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
    }

    test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
            ggml_type type_input = GGML_TYPE_F32,
            std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
            int k0 = 3, int k1 = 3,
            int s0 = 1, int s1 = 1,
            int p0 = 1, int p1 = 1)
        : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
        ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
        return out;
    }
};

// GGML_OP_CONV_TRANSPOSE_1D
struct test_conv_transpose_1d : public test_case {
    const std::array<int64_t, 4> ne_input;
    const std::array<int64_t, 4> ne_kernel;

    const int s0; // stride
    const int p0; // padding
    const int d0; // dilation

    std::string vars() override {
        return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
    }

    test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
                           std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
                           int s0 = 1, int p0 = 0, int d0 = 1)
        : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
        ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
        ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
        return out;
    }
};

// GGML_OP_IM2COL
struct test_im2col : public test_case {
    const ggml_type type_input;
    const ggml_type type_kernel;
    const ggml_type dst_type;
    const std::array<int64_t, 4> ne_input;
    const std::array<int64_t, 4> ne_kernel;
    // stride
    const int s0;
    const int s1;
    // padding
    const int p0;
    const int p1;
    // dilation
    const int d0;
    const int d1;
    // mode
    const bool is_2D;

    std::string vars() override {
        return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
    }

    test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
            std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
            int s0 = 1, int s1 = 1,
            int p0 = 1, int p1 = 1,
            int d0 = 1, int d1 = 1,
            bool is_2D = true)
        : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
        ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
        ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
        return out;
    }
};

// GGML_OP_CONCAT
struct test_concat : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne_a;
    const int64_t ne_b_d;
    const int dim;
    const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)

    std::string vars() override {
        return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
    }

    test_concat(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
            int64_t ne_b_d = 10,
            int dim = 2, int v = 0)
        : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        auto ne_b = ne_a;
        ne_b[dim] = ne_b_d;
        ggml_tensor * a;
        if (v & 1) {
            auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
            a = ggml_new_tensor(ctx, type, 4, ne.data());
            a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
        } else {
            a = ggml_new_tensor(ctx, type, 4, ne_a.data());
        }
        ggml_tensor * b;
        if (v & 2) {
            auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
            b = ggml_new_tensor(ctx, type, 4, ne.data());
            b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
        } else {
            b = ggml_new_tensor(ctx, type, 4, ne_b.data());
        }
        ggml_tensor * out = ggml_concat(ctx, a, b, dim);
        return out;
    }
};

// GGML_OP_ARGSORT
struct test_argsort : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    ggml_sort_order order;

    std::string vars() override {
        return VARS_TO_STR3(type, ne, order);
    }

    test_argsort(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {16, 10, 10, 10},
            ggml_sort_order order = GGML_SORT_ORDER_ASC)
        : type(type), ne(ne), order(order) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_argsort(ctx, a, order);
        return out;
    }

    void initialize_tensors(ggml_context * ctx) override {
        std::random_device rd;
        std::default_random_engine rng(rd());
        for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
            if (t->type == GGML_TYPE_I32) {
                // indices
                std::vector<int> data(ggml_nelements(t));
                for (int i = 0; i < ggml_nelements(t); i++) {
                    data[i] = rand();
                }
                std::shuffle(data.begin(), data.end(), rng);
                ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
            } else if (t->type == GGML_TYPE_F32) {
                // initialize with unique values to avoid ties
                for (int64_t r = 0; r < ggml_nrows(t); r++) {
                    std::vector<float> data(t->ne[0]);
                    for (int i = 0; i < t->ne[0]; i++) {
                        data[i] = i;
                    }
                    std::shuffle(data.begin(), data.end(), rng);
                    ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
                }
            } else {
                GGML_ABORT("fatal error");
            }
        }
    }
};

// GGML_OP_SUM_ROWS
struct test_sum_rows : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;

    std::string vars() override {
        return VARS_TO_STR2(type, ne);
    }

    test_sum_rows(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {10, 10, 10, 10})
        : type(type), ne(ne) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_sum_rows(ctx, a);
        return out;
    }
};

// GGML_OP_UPSCALE
struct test_upscale : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    const int32_t scale_factor;
    const bool transpose;

    std::string vars() override {
        return VARS_TO_STR4(type, ne, scale_factor, transpose);
    }

    test_upscale(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {512, 512, 3, 1},
            int32_t scale_factor = 2, bool transpose = false)
        : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        if (transpose) a = ggml_transpose(ctx, a);
        ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
        return out;
    }
};

// GGML_OP_UPSCALE (ext)
struct test_upscale_ext : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    const std::array<int64_t, 4> ne_tgt;

    std::string vars() override {
        return VARS_TO_STR3(type, ne, ne_tgt);
    }

    test_upscale_ext(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne     = {2, 5,  7, 11},
            std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
        : type(type), ne(ne), ne_tgt(ne_tgt) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
        return out;
    }
};

// GGML_OP_GROUP_NORM
struct test_group_norm : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne;
    const int32_t num_groups;
    const float eps;

    std::string vars() override {
        return VARS_TO_STR3(type, ne, num_groups);
    }

    test_group_norm(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne = {64, 64, 320, 1},
            int32_t num_groups = 32,
            float eps = 1e-6f)
        : type(type), ne(ne), num_groups(num_groups), eps(eps) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
        ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
        return out;
    }
};

// GGML_OP_ACC
struct test_acc : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne_a;
    const std::array<int64_t, 4> ne_b;

    std::string vars() override {
        return VARS_TO_STR3(type, ne_a, ne_b);
    }

    test_acc(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne_a = {1024, 577, 1, 1},
            std::array<int64_t, 4> ne_b = {1024, 576, 1, 1})
        : type(type), ne_a(ne_a), ne_b(ne_b) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
        ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
        ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
        return out;
    }
};

// GGML_OP_PAD
struct test_pad : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne_a;
    const int pad_0;
    const int pad_1;

    std::string vars() override {
        return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
    }

    test_pad(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
            int pad_0 = 1, int pad_1 = 1)
        : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1)  {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
        ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
        return out;
    }
};

// GGML_OP_ARANGE
struct test_arange : public test_case {
    const ggml_type type;
    const float start;
    const float stop;
    const float step;

    std::string vars() override {
        return VARS_TO_STR4(type, start, stop, step);
    }

    test_arange(ggml_type type = GGML_TYPE_F32,
            float start = 0.f, float stop = 10.f, float step = 1.f)
        : type(type), start(start), stop(stop), step(step)  {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * out = ggml_arange(ctx, start, stop, step);
        return out;
    }
};

// GGML_OP_TIMESTEP_EMBEDDING
struct test_timestep_embedding : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne_a;
    const int dim;
    const int max_period;

    std::string vars() override {
        return VARS_TO_STR4(type, ne_a, dim, max_period);
    }

    test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
            int dim = 320, int max_period=10000)
        : type(type), ne_a(ne_a), dim(dim), max_period(max_period)  {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
        ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
        return out;
    }
};

// GGML_OP_LEAKY_RELU
struct test_leaky_relu : public test_case {
    const ggml_type type;
    const std::array<int64_t, 4> ne_a;
    const float negative_slope;

    std::string vars() override {
        return VARS_TO_STR3(type, ne_a, negative_slope);
    }

    test_leaky_relu(ggml_type type = GGML_TYPE_F32,
            std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
            float negative_slope = 0.1f)
        : type(type), ne_a(ne_a), negative_slope(negative_slope)  {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
        ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
        return out;
    }
};

// GGML_OP_FLASH_ATTN_EXT
struct test_flash_attn_ext : public test_case {
    const int64_t hs; // head size
    const int64_t nh; // num heads
    const int64_t kv; // kv size
    const int64_t nb; // batch size

    const bool mask; // use mask

    const float max_bias; // ALiBi

    const ggml_type type_KV;

    std::string vars() override {
        return VARS_TO_STR7(hs, nh, kv, nb, mask, max_bias, type_KV);
    }

    double max_nmse_err() override {
        return 5e-4;
    }

    test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
        : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), type_KV(type_KV) {}

    ggml_tensor * build_graph(ggml_context * ctx) override {
        const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));

        ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs_padded, nb, nh, 1);
        ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV,       hs_padded, kv, nh, 1);
        ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV,       hs_padded, kv, nh, 1);
        ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr;
        ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias);
        return out;
    }
};

enum llm_norm_type {
    LLM_NORM,
    LLM_NORM_RMS,
};

struct llama_hparams {
    uint32_t n_vocab;
    uint32_t n_embd;
    uint32_t n_head;
    uint32_t n_head_kv;
    static constexpr uint32_t n_layer = 1;
    uint32_t n_rot;
    uint32_t n_embd_head; // dimension of values (d_v)
    uint32_t n_ff;

    float f_norm_eps;
    float f_norm_rms_eps;

    // cparams
    static constexpr uint32_t n_ctx = 512; // user-specified context size
    static constexpr uint32_t n_ctx_orig = n_ctx;

    // batch
    int32_t n_tokens;

    // llm_build_context
    static constexpr int32_t n_kv    = 32; // size of KV cache to consider (n_kv <= n_ctx
    static constexpr int32_t kv_head = 1;  // index of where we store new KV data in the cache

    uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
        return n_embd_head * n_head_kv;
    }
};

// LLM base class
struct test_llm : public test_case {
    llama_hparams hp;

protected:
    test_llm(llama_hparams hp)
        : hp(std::move(hp)) {
    }

public:
    struct ggml_tensor * llm_build_norm(
            struct ggml_context * ctx,
             struct ggml_tensor * cur,
             struct ggml_tensor * mw,
             struct ggml_tensor * mb,
                  llm_norm_type   type) {
        switch (type) {
            case LLM_NORM:     cur = ggml_norm    (ctx, cur, hp.f_norm_eps); break;
            case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
        }
        cur = ggml_mul(ctx, cur, mw);
        if (mb) {
            cur = ggml_add(ctx, cur, mb);
        }
        return cur;
    }

    void llm_build_kv_store(
            struct ggml_context * ctx,
             struct ggml_tensor * k_l,
             struct ggml_tensor * v_l,
             struct ggml_tensor * k_cur,
             struct ggml_tensor * v_cur) {
        // compute the transposed [n_tokens, n_embd] V matrix
        struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));

        struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
                (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);

        struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
                (  hp.n_ctx)*ggml_element_size(v_l),
                (hp.kv_head)*ggml_element_size(v_l));

        // important: storing RoPE-ed version of K in the KV cache!
        ggml_cpy(ctx, k_cur,   k_cache_view);
        ggml_cpy(ctx, v_cur_t, v_cache_view);
    }

    struct ggml_tensor * llm_build_kqv(
            struct ggml_context * ctx,
             struct ggml_tensor * k_l,
             struct ggml_tensor * v_l,
             struct ggml_tensor * q_cur,
             struct ggml_tensor * kq_mask,
                        float     kq_scale) {
        struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);

        struct ggml_tensor * k =
            ggml_view_3d(ctx, k_l,
                    hp.n_embd_head, hp.n_kv, hp.n_head_kv,
                    ggml_row_size(k_l->type, hp.n_embd_gqa()),
                    ggml_row_size(k_l->type, hp.n_embd_head),
                    0);

        struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);

        kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);

        // split cached v into n_head heads
        struct ggml_tensor * v =
            ggml_view_3d(ctx, v_l,
                    hp.n_kv, hp.n_embd_head, hp.n_head_kv,
                    ggml_element_size(v_l)*hp.n_ctx,
                    ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
                    0);

        struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);

        struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);

        struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);

        struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
        cur = ggml_mul_mat(ctx, wo, cur);

        return cur;
    }

    void initialize_tensors(ggml_context * ctx) override {
        for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
            if (t->type == GGML_TYPE_I32) {
                // pos
                std::vector<int> data(hp.n_tokens);
                for (int i = 0; i < hp.n_tokens; i++) {
                    data[i] = rand() % hp.n_ctx;
                }
                ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
            } else {
                init_tensor_uniform(t);
            }
        }
    }
};

// Llama
struct test_llama : public test_llm {
    static constexpr float freq_base = 10000.0f;
    static constexpr float freq_scale = 1.0f;
    static constexpr float ext_factor = 0.0f;
    static constexpr float attn_factor = 1.0f;
    static constexpr float beta_fast = 32.0f;
    static constexpr float beta_slow = 1.0f;

    std::string op_desc(ggml_tensor * t) override {
        GGML_UNUSED(t);
        return "LLAMA";
    }

    std::string vars() override {
        auto n_tokens = hp.n_tokens;
        return VARS_TO_STR1(n_tokens);
    }

    double max_nmse_err() override {
        return 2e-3;
    }

    test_llama(int n_tokens = 1)
        : test_llm({
            /*n_vocab        =*/ 32000,
            /*n_embd         =*/ 3200,
            /*n_head         =*/ 32,
            /*n_head_kv      =*/ 32,
            /*n_rot          =*/ 100,
            /*n_embd_head    =*/ 100,
            /*n_ff           =*/ 8640,
            /*f_norm_eps     =*/ 0.f,
            /*f_norm_rms_eps =*/ 1e-5f,
            /*n_tokens       =*/ n_tokens,
        }) {
    }

    ggml_tensor * build_graph(ggml_context * ctx) override {
        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);

        ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
        ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);

        for (uint32_t il = 0; il < hp.n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
            cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);

            // self-attention
            {
                ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
                ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
                ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());

                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
                struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
                struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);

                Qcur = ggml_rope_ext(
                    ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head,    hp.n_tokens), inp_pos, nullptr,
                    hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );

                Kcur = ggml_rope_ext(
                    ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
                    hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );

                llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);

                cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);

            // feed-forward network
            ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
            cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);

            ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
            ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff,   hp.n_embd);
            ggml_tensor * ffn_up   = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
            struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
            cur = ggml_mul_mat(ctx, ffn_gate, cur);
            cur = ggml_silu(ctx, cur);
            cur = ggml_mul(ctx, cur, tmp);
            cur = ggml_mul_mat(ctx, ffn_down, cur);

            cur = ggml_add(ctx, cur, ffn_inp);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
        cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);

        // lm_head
        ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
        cur = ggml_mul_mat(ctx, output, cur);

        return cur;
    }
};

// Falcon
struct test_falcon : public test_llm {
    static constexpr float freq_base = 10000.0f;
    static constexpr float freq_scale = 1.0f;
    static constexpr float ext_factor = 0.0f;
    static constexpr float attn_factor = 1.0f;
    static constexpr float beta_fast = 32.0f;
    static constexpr float beta_slow = 1.0f;

    std::string op_desc(ggml_tensor * t) override {
        GGML_UNUSED(t);
        return "FALCON";
    }

    std::string vars() override {
        auto n_tokens = hp.n_tokens;
        return VARS_TO_STR1(n_tokens);
    }

    double max_nmse_err() override {
        return 2e-3;
    }

    test_falcon(int n_tokens = 1)
        : test_llm({
            /*n_vocab        =*/ 32000,
            /*n_embd         =*/ 3200,
            /*n_head         =*/ 50,
            /*n_head_kv      =*/ 1,
            /*n_rot          =*/ 64,
            /*n_embd_head    =*/ 64,
            /*n_ff           =*/ 8640,
            /*f_norm_eps     =*/ 1e-5f,
            /*f_norm_rms_eps =*/ 0.f,
            /*n_tokens       =*/ n_tokens,
        }) {
    }

    ggml_tensor * build_graph(ggml_context * ctx) override {
        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);

        ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
        ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);

        for (uint32_t il = 0; il < hp.n_layer; ++il) {
            // norm
            ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
            ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
            ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);

            // self-attention
            {
                cur = attn_norm;

                ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());

                cur = ggml_mul_mat(ctx, wqkv, cur);

                struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd,     hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));

                Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head,    hp.n_tokens);
                Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);

                // using mode = 2 for neox mode
                Qcur = ggml_rope_ext(
                    ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );

                Kcur = ggml_rope_ext(
                    ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );

                llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);

                cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
            }

            struct ggml_tensor * ffn_inp = cur;

            // feed forward
            {
                ggml_tensor * ffn_up   = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
                ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
                cur = attn_norm;
                cur = ggml_mul_mat(ctx, ffn_up, cur);
                cur = ggml_gelu(ctx, cur);
                cur = ggml_mul_mat(ctx, ffn_down, cur);
            }

            cur = ggml_add(ctx, cur, ffn_inp);

            cur = ggml_add(ctx, cur, inpL);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        ggml_tensor * output_norm   = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
        ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
        cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);

        // lm_head
        ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
        cur = ggml_mul_mat(ctx, output, cur);

        return cur;
    }
};

static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
    std::vector<std::unique_ptr<test_case>> test_cases;
    std::default_random_engine rng(0);

    const ggml_type all_types[] = {
        GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
        GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
        GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
        GGML_TYPE_Q8_0,
        GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
        GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
        GGML_TYPE_Q6_K,
        GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
        GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
        GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
    };

    const ggml_type base_types[] = {
        GGML_TYPE_F32, GGML_TYPE_F16,
        GGML_TYPE_Q4_0,
        GGML_TYPE_Q4_K,
        GGML_TYPE_IQ2_XXS
    };

    const ggml_type other_types[] = {
        GGML_TYPE_Q4_1,
        GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
        GGML_TYPE_Q8_0,
        GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
        GGML_TYPE_Q5_K,
        GGML_TYPE_Q6_K,
        GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
        GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
        GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
        GGML_TYPE_BF16,
    };

    // unary ops
    for (int v : {0, 1}) {
        for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
            test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 128, 10, 10, 10 }, v));
            test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 7, 13, 19, 23 }, v));
        }
    }

    test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
    for (ggml_type type : all_types) {
        for (int b : {1, 7}) {
            for (bool v : {false, true}) {
                test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
            }
        }
    }
    for (int b : {1, 7}) {
        for (bool v : {false, true}) {
            test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
        }
    }

    for (ggml_type type_input : {GGML_TYPE_F32}) {
        for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
            for (int k0 : {1, 3}) {
                for (int k1 : {1, 3}) {
                    for (int s0 : {1, 2}) {
                        for (int s1 : {1, 2}) {
                            for (int p0 : {0, 1}) {
                                for (int p1 : {0, 1}) {
                                    test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
    test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
    // test cases for 1D im2col
    test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
    test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));

    test_cases.emplace_back(new test_conv_transpose_1d());
    test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
    test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
    test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
    test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
    test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
    test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
    test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));


    test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
    test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
    test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
    test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
    test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
    test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1}));
    test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2}));

    test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
    test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
    test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
    test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
    test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
    test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
    test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
    test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
    test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
    test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));

    for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
        for (ggml_type type_dst : all_types) {
           test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
           test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
        }
    }
    for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
        for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
            test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
        }
    }

    test_cases.emplace_back(new test_cont());

    auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
        for (auto op : {ggml_add, ggml_mul, ggml_div}) {
            test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
        }
    };

    add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});

    // stable diffusion
    add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
    add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
    //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
    //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});

    test_cases.emplace_back(new test_scale());

    for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
        test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
        test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
    }

#if 1
    for (ggml_type type_a : base_types) {
        for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1,  1}, {1, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10,  1}, {1, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10,  1}, {2, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));

            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1,  1}, {1, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10,  1}, {1, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10,  1}, {2, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
        }
    }
#else
    // m = a rows
    // n = b rows
    // k = cols
    std::uniform_int_distribution<> dist_m(1, 128);
    std::uniform_int_distribution<> dist_n(16, 128);
    std::uniform_int_distribution<> dist_k(1, 16);
    for (int i = 0; i < 1000; i++) {
        for (ggml_type type_a : all_types) {
            for (ggml_type type_b : {GGML_TYPE_F32}) {
                int m = dist_m(rng);
                int n = dist_n(rng);
                int k = dist_k(rng) * ggml_blck_size(type_a);
                test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1,  1}, {1, 1}));
            }
        }
    }
#endif

    for (ggml_type type_a : other_types) {
        for (ggml_type type_b : {GGML_TYPE_F32}) {
            if (ggml_blck_size(type_a) != 256) {
                test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1,  1}, {1, 1}));
            }
            test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1,  1}, {1, 1}));
        }
    }

    test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  64, 2,  128, { 8,  1}, {1, 1}));
    test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  83, 2,  128, { 8,  1}, {4, 1}));
    test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  64, 2,   64, { 8,  1}, {4, 1}));
    test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  83, 2,   64, { 8,  1}, {4, 1}));
    test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  64, 45, 128, { 8,  1}, {4, 1}));
    test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45,  64, { 8,  1}, {4, 1}));

    for (ggml_type type_a : base_types) {
        for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
            for (int n_mats : {4, 8}) {
                for (int n_used : {1, 2, 4}) {
                    for (bool b : {false, true}) {
                        for (int n : {1, 32}) {
                            int m = 512;
                            int k = 256;
                            test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
                        }
                    }
                }
            }
        }
    }

    for (ggml_type type_a : other_types) {
        for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
            for (int n_mats : {4}) {
                for (int n_used : {2}) {
                    for (bool b : {false}) {
                        for (int n : {1}) {
                            int m = 512;
                            int k = 256;
                            test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
                        }
                    }
                }
            }
        }
    }

    test_cases.emplace_back(new test_sqr());
    test_cases.emplace_back(new test_sqrt());
    test_cases.emplace_back(new test_clamp());

    test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10,  1,  1}, 5));
    test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10,  1}, 5));
    test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));

#if 0
    std::uniform_int_distribution<> dist_ne1(1, 50);
    int exponent = 1;
    while (exponent < (1 << 17)) {
        std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);

        for (int n = 0; n < 10; ++n) {
            int64_t ne0 = dist_ne0(rng);
            int64_t ne1 = dist_ne1(rng);
            test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
        }

        exponent <<= 1;
    }
#endif
    for (bool mask : {false, true}) {
        for (float max_bias : {0.0f, 8.0f}) {
            if (!mask && max_bias > 0.0f) continue;
            for (float scale : {1.0f, 0.1f}) {
                for (int64_t ne0 : {16, 1024}) {
                    for (int64_t ne1 : {16, 1024}) {
                        test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0,   ne1,   1, 1}, mask, scale, max_bias));
                        test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
                    }
                }
            }
        }
    }
    test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f));
    test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
    test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true,  0.1f, 0.0f));
    test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true,  0.1f, 8.0f));

    {
        bool all = true;

        for (float v : { 0, 1 }) {
            for (float fs : { 1.0f, 1.4245f }) {
                for (float ef : { 0.0f, 0.7465f }) {
                    for (float af : { 1.0f, 1.4245f }) {
                        for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
                            for (bool ff : {false, true}) { // freq_factors
                                test_cases.emplace_back(new test_rope(type, {128,  32, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 7B

                                if (all) {
                                    test_cases.emplace_back(new test_rope(type, {128,  40, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 13B
                                    test_cases.emplace_back(new test_rope(type, {128,  52, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 30B
                                    test_cases.emplace_back(new test_rope(type, {128,  64, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 65B
                                }

                                if (all) {
                                    test_cases.emplace_back(new test_rope(type, { 64,   1, 10, 1},  64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
                                    test_cases.emplace_back(new test_rope(type, { 64,  71, 10, 1},  64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
                                    test_cases.emplace_back(new test_rope(type, { 64,   8, 10, 1},  64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
                                    test_cases.emplace_back(new test_rope(type, { 80,  32, 10, 1},  20, 2, 512, fs, ef, af, ff, v)); // neox (stablelm)
                                    test_cases.emplace_back(new test_rope(type, { 80,  32, 10, 1},  32, 2, 512, fs, ef, af, ff, v)); // neox (phi-2)
                                }

                                test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1},  64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
                            }
                        }

                        all = false;
                    }
                }
            }
        }
    }

    for (int v : { 0, 1, 2, 3 }) {
        for (int dim : { 0, 1, 2, 3, }) {
            test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
            test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
        }
    }

    for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
        test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
        test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
        test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
    }

    test_cases.emplace_back(new test_sum_rows());
    test_cases.emplace_back(new test_upscale());
    test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
    test_cases.emplace_back(new test_upscale_ext());
    test_cases.emplace_back(new test_group_norm());
    test_cases.emplace_back(new test_acc());
    test_cases.emplace_back(new test_pad());
    test_cases.emplace_back(new test_arange());
    test_cases.emplace_back(new test_timestep_embedding());
    test_cases.emplace_back(new test_leaky_relu());

    for (int hs : { 64, 80, 128, 256, }) {
        for (bool mask : { true, false } ) {
            for (float max_bias : { 0.0f, 8.0f }) {
                if (!mask && max_bias > 0.0f) continue;
                for (int nh : { 32, }) {
                    for (int kv : { 512, 1024, }) {
                        for (int nb : { 1, 2, 4, 8, }) {
                            for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
                                test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, type_KV));
                            }
                        }
                    }
                }
            }
        }
    }

    // these tests are disabled to save execution time, but they can be handy for debugging
#if 0
    test_cases.emplace_back(new test_llama(1));
    test_cases.emplace_back(new test_llama(2));
    test_cases.emplace_back(new test_falcon(1));
    test_cases.emplace_back(new test_falcon(2));
#endif

    // run tests
    if (mode == MODE_TEST) {
        ggml_backend_t backend_cpu = ggml_backend_cpu_init();

        size_t n_ok = 0;
        for (auto & test : test_cases) {
            if (test->eval(backend, backend_cpu, op_name)) {
                n_ok++;
            }
        }
        printf("  %zu/%zu tests passed\n", n_ok, test_cases.size());

        ggml_backend_free(backend_cpu);

        return n_ok == test_cases.size();
    }

    if (mode == MODE_PERF) {
        for (auto & test : test_cases) {
            test->eval_perf(backend, op_name);
        }
        return true;
    }

    GGML_ABORT("fatal error");
    return false;
}

static void usage(char ** argv) {
    printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
    printf("  valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
    printf("  op names are as given by ggml_op_desc()\n");
}

int main(int argc, char ** argv) {
    test_mode mode = MODE_TEST;
    const char * op_name_filter = NULL;
    const char * backend_filter = NULL;

    for (int i = 1; i < argc; i++) {
        if (strcmp(argv[i], "test") == 0) {
            mode = MODE_TEST;
        } else if (strcmp(argv[i], "perf") == 0) {
            mode = MODE_PERF;
        } else if (strcmp(argv[i], "-o") == 0) {
            if (i + 1 < argc) {
                op_name_filter = argv[++i];
            } else {
                usage(argv);
                return 1;
            }
        } else if (strcmp(argv[i], "-b") == 0) {
            if (i + 1 < argc) {
                backend_filter = argv[++i];
            } else {
                usage(argv);
                return 1;
            }
        } else {
            usage(argv);
            return 1;
        }
    }

    // enumerate backends
    printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());

    size_t n_ok = 0;

    for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
        printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));

        if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
            printf("  Skipping\n");
            n_ok++;
            continue;
        }

        ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
        GGML_ASSERT(backend != NULL);

        if (backend_filter == NULL && ggml_backend_is_cpu(backend)) {
            printf("  Skipping CPU backend\n");
            ggml_backend_free(backend);
            n_ok++;
            continue;
        }

        printf("  Backend name: %s\n", ggml_backend_name(backend));

        bool ok = test_backend(backend, mode, op_name_filter);

        printf("  Backend %s: ", ggml_backend_name(backend));
        if (ok) {
            printf("\033[1;32mOK\033[0m\n");
            n_ok++;
        } else {
            printf("\033[1;31mFAIL\033[0m\n");
        }

        printf("\n");

        ggml_backend_free(backend);
    }

    printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());

    if (n_ok != ggml_backend_reg_get_count()) {
        printf("\033[1;31mFAIL\033[0m\n");
        return 1;
    }

    ggml_quantize_free();

    printf("\033[1;32mOK\033[0m\n");
    return 0;
}