Spaces:
Runtime error
Runtime error
image resolution dimensions divisible by 32 fix; advanced settings; debug mask mode
Browse files
app.py
CHANGED
|
@@ -1,6 +1,11 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 4 |
from diffusers import FluxInpaintPipeline
|
| 5 |
|
| 6 |
MARKDOWN = """
|
|
@@ -11,39 +16,79 @@ creating this amazing model, and a big thanks to [Gothos](https://github.com/Got
|
|
| 11 |
for taking it to the next level by enabling inpainting with the FLUX.
|
| 12 |
"""
|
| 13 |
|
|
|
|
|
|
|
| 14 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
pipe = FluxInpaintPipeline.from_pretrained(
|
| 17 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
| 18 |
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
@spaces.GPU()
|
| 21 |
-
def process(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
if not input_text:
|
| 23 |
gr.Info("Please enter a text prompt.")
|
| 24 |
return None
|
| 25 |
|
| 26 |
image = input_image_editor['background']
|
| 27 |
-
|
| 28 |
|
| 29 |
if not image:
|
| 30 |
gr.Info("Please upload an image.")
|
| 31 |
return None
|
| 32 |
|
| 33 |
-
if not
|
| 34 |
gr.Info("Please draw a mask on the image.")
|
| 35 |
return None
|
| 36 |
|
| 37 |
-
width, height = image.size
|
|
|
|
|
|
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
return pipe(
|
| 40 |
prompt=input_text,
|
| 41 |
-
image=
|
| 42 |
-
mask_image=
|
| 43 |
width=width,
|
| 44 |
height=height,
|
| 45 |
-
strength=
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
with gr.Blocks() as demo:
|
|
@@ -57,27 +102,66 @@ with gr.Blocks() as demo:
|
|
| 57 |
image_mode='RGB',
|
| 58 |
layers=False,
|
| 59 |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
with gr.Column():
|
| 70 |
output_image_component = gr.Image(
|
| 71 |
type='pil', image_mode='RGB', label='Generated image')
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
submit_button_component.click(
|
| 74 |
fn=process,
|
| 75 |
inputs=[
|
| 76 |
input_image_editor_component,
|
| 77 |
-
input_text_component
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
],
|
| 79 |
outputs=[
|
| 80 |
-
output_image_component
|
|
|
|
| 81 |
]
|
| 82 |
)
|
| 83 |
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
import gradio as gr
|
| 6 |
+
import spaces
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
from diffusers import FluxInpaintPipeline
|
| 10 |
|
| 11 |
MARKDOWN = """
|
|
|
|
| 16 |
for taking it to the next level by enabling inpainting with the FLUX.
|
| 17 |
"""
|
| 18 |
|
| 19 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
+
MAX_IMAGE_SIZE = 2048
|
| 21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
pipe = FluxInpaintPipeline.from_pretrained(
|
| 24 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
| 25 |
|
| 26 |
|
| 27 |
+
def resize_image_dimensions(
|
| 28 |
+
original_resolution_wh: Tuple[int, int],
|
| 29 |
+
maximum_dimension: int = 2048
|
| 30 |
+
) -> Tuple[int, int]:
|
| 31 |
+
width, height = original_resolution_wh
|
| 32 |
+
|
| 33 |
+
if width > height:
|
| 34 |
+
scaling_factor = maximum_dimension / width
|
| 35 |
+
else:
|
| 36 |
+
scaling_factor = maximum_dimension / height
|
| 37 |
+
|
| 38 |
+
new_width = int(width * scaling_factor)
|
| 39 |
+
new_height = int(height * scaling_factor)
|
| 40 |
+
|
| 41 |
+
new_width = new_width - (new_width % 32)
|
| 42 |
+
new_height = new_height - (new_height % 32)
|
| 43 |
+
|
| 44 |
+
new_width = min(maximum_dimension, new_width)
|
| 45 |
+
new_height = min(maximum_dimension, new_height)
|
| 46 |
+
|
| 47 |
+
return new_width, new_height
|
| 48 |
+
|
| 49 |
+
|
| 50 |
@spaces.GPU()
|
| 51 |
+
def process(
|
| 52 |
+
input_image_editor: dict,
|
| 53 |
+
input_text: str,
|
| 54 |
+
seed_slicer: int,
|
| 55 |
+
randomize_seed_checkbox: bool,
|
| 56 |
+
strength_slider: float,
|
| 57 |
+
num_inference_steps_slider: int,
|
| 58 |
+
progress=gr.Progress(track_tqdm=True)
|
| 59 |
+
):
|
| 60 |
if not input_text:
|
| 61 |
gr.Info("Please enter a text prompt.")
|
| 62 |
return None
|
| 63 |
|
| 64 |
image = input_image_editor['background']
|
| 65 |
+
mask = input_image_editor['layers'][0]
|
| 66 |
|
| 67 |
if not image:
|
| 68 |
gr.Info("Please upload an image.")
|
| 69 |
return None
|
| 70 |
|
| 71 |
+
if not mask:
|
| 72 |
gr.Info("Please draw a mask on the image.")
|
| 73 |
return None
|
| 74 |
|
| 75 |
+
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
| 76 |
+
resized_image = image.resize((width, height), Image.LANCZOS)
|
| 77 |
+
resized_mask = mask.resize((width, height), Image.NEAREST)
|
| 78 |
|
| 79 |
+
if randomize_seed_checkbox:
|
| 80 |
+
seed_slicer = random.randint(0, MAX_SEED)
|
| 81 |
+
generator = torch.Generator().manual_seed(seed_slicer)
|
| 82 |
return pipe(
|
| 83 |
prompt=input_text,
|
| 84 |
+
image=resized_image,
|
| 85 |
+
mask_image=resized_mask,
|
| 86 |
width=width,
|
| 87 |
height=height,
|
| 88 |
+
strength=strength_slider,
|
| 89 |
+
generator=generator,
|
| 90 |
+
num_inference_steps=num_inference_steps_slider
|
| 91 |
+
).images[0], resized_mask
|
| 92 |
|
| 93 |
|
| 94 |
with gr.Blocks() as demo:
|
|
|
|
| 102 |
image_mode='RGB',
|
| 103 |
layers=False,
|
| 104 |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
| 105 |
+
|
| 106 |
+
with gr.Row():
|
| 107 |
+
input_text_component = gr.Text(
|
| 108 |
+
label="Prompt",
|
| 109 |
+
show_label=False,
|
| 110 |
+
max_lines=1,
|
| 111 |
+
placeholder="Enter your prompt",
|
| 112 |
+
container=False,
|
| 113 |
+
)
|
| 114 |
+
submit_button_component = gr.Button(
|
| 115 |
+
value='Submit', variant='primary', scale=0)
|
| 116 |
+
|
| 117 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 118 |
+
seed_slicer_component = gr.Slider(
|
| 119 |
+
label="Seed",
|
| 120 |
+
minimum=0,
|
| 121 |
+
maximum=MAX_SEED,
|
| 122 |
+
step=1,
|
| 123 |
+
value=0,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
randomize_seed_checkbox_component = gr.Checkbox(
|
| 127 |
+
label="Randomize seed", value=True)
|
| 128 |
+
|
| 129 |
+
with gr.Row():
|
| 130 |
+
strength_slider_component = gr.Slider(
|
| 131 |
+
label="Strength",
|
| 132 |
+
minimum=0,
|
| 133 |
+
maximum=1,
|
| 134 |
+
step=0.01,
|
| 135 |
+
value=0.75,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
num_inference_steps_slider_component = gr.Slider(
|
| 139 |
+
label="Number of inference steps",
|
| 140 |
+
minimum=1,
|
| 141 |
+
maximum=50,
|
| 142 |
+
step=1,
|
| 143 |
+
value=20,
|
| 144 |
+
)
|
| 145 |
with gr.Column():
|
| 146 |
output_image_component = gr.Image(
|
| 147 |
type='pil', image_mode='RGB', label='Generated image')
|
| 148 |
+
with gr.Accordion("Debug", open=False):
|
| 149 |
+
output_mask_component = gr.Image(
|
| 150 |
+
type='pil', image_mode='RGB', label='Input mask')
|
| 151 |
|
| 152 |
submit_button_component.click(
|
| 153 |
fn=process,
|
| 154 |
inputs=[
|
| 155 |
input_image_editor_component,
|
| 156 |
+
input_text_component,
|
| 157 |
+
seed_slicer_component,
|
| 158 |
+
randomize_seed_checkbox_component,
|
| 159 |
+
strength_slider_component,
|
| 160 |
+
num_inference_steps_slider_component
|
| 161 |
],
|
| 162 |
outputs=[
|
| 163 |
+
output_image_component,
|
| 164 |
+
output_mask_component
|
| 165 |
]
|
| 166 |
)
|
| 167 |
|