File size: 10,862 Bytes
7f43945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import glob
import torch
import torchvision
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
# import skvideo.io
matplotlib.use('agg')
def prepare_hazy_image(file_name):
img_pil = crop_image(get_image(file_name, -1)[0], d=32)
return pil_to_np(img_pil)
def prepare_gt_img(file_name, SOTS=True):
if SOTS:
img_pil = crop_image(crop_a_image(get_image(file_name, -1)[0], d=10), d=32)
else:
img_pil = crop_image(get_image(file_name, -1)[0], d=32)
return pil_to_np(img_pil)
def crop_a_image(img, d=10):
bbox = [
int((d)),
int((d)),
int((img.size[0] - d)),
int((img.size[1] - d)),
]
img_cropped = img.crop(bbox)
return img_cropped
def crop_image(img, d=32):
"""
Make dimensions divisible by d
:param pil img:
:param d:
:return:
"""
new_size = (img.size[0] - img.size[0] % d,
img.size[1] - img.size[1] % d)
bbox = [
int((img.size[0] - new_size[0]) / 2),
int((img.size[1] - new_size[1]) / 2),
int((img.size[0] + new_size[0]) / 2),
int((img.size[1] + new_size[1]) / 2),
]
img_cropped = img.crop(bbox)
return img_cropped
def crop_np_image(img_np, d=32):
return torch_to_np(crop_torch_image(np_to_torch(img_np), d))
def crop_torch_image(img, d=32):
"""
Make dimensions divisible by d
image is [1, 3, W, H] or [3, W, H]
:param pil img:
:param d:
:return:
"""
new_size = (img.shape[-2] - img.shape[-2] % d,
img.shape[-1] - img.shape[-1] % d)
pad = ((img.shape[-2] - new_size[-2]) // 2, (img.shape[-1] - new_size[-1]) // 2)
if len(img.shape) == 4:
return img[:, :, pad[-2]: pad[-2] + new_size[-2], pad[-1]: pad[-1] + new_size[-1]]
assert len(img.shape) == 3
return img[:, pad[-2]: pad[-2] + new_size[-2], pad[-1]: pad[-1] + new_size[-1]]
def get_params(opt_over, net, net_input, downsampler=None):
"""
Returns parameters that we want to optimize over.
:param opt_over: comma separated list, e.g. "net,input" or "net"
:param net: network
:param net_input: torch.Tensor that stores input `z`
:param downsampler:
:return:
"""
opt_over_list = opt_over.split(',')
params = []
for opt in opt_over_list:
if opt == 'net':
params += [x for x in net.parameters()]
elif opt == 'down':
assert downsampler is not None
params = [x for x in downsampler.parameters()]
elif opt == 'input':
net_input.requires_grad = True
params += [net_input]
else:
assert False, 'what is it?'
return params
def get_image_grid(images_np, nrow=8):
"""
Creates a grid from a list of images by concatenating them.
:param images_np:
:param nrow:
:return:
"""
images_torch = [torch.from_numpy(x).type(torch.FloatTensor) for x in images_np]
torch_grid = torchvision.utils.make_grid(images_torch, nrow)
return torch_grid.numpy()
def plot_image_grid(name, images_np, interpolation='lanczos', output_path="output/"):
"""
Draws images in a grid
Args:
images_np: list of images, each image is np.array of size 3xHxW or 1xHxW
nrow: how many images will be in one row
interpolation: interpolation used in plt.imshow
"""
assert len(images_np) == 2
n_channels = max(x.shape[0] for x in images_np)
assert (n_channels == 3) or (n_channels == 1), "images should have 1 or 3 channels"
images_np = [x if (x.shape[0] == n_channels) else np.concatenate([x, x, x], axis=0) for x in images_np]
grid = get_image_grid(images_np, 2)
if images_np[0].shape[0] == 1:
plt.imshow(grid[0], cmap='gray', interpolation=interpolation)
else:
plt.imshow(grid.transpose(1, 2, 0), interpolation=interpolation)
plt.savefig(output_path + "{}.png".format(name))
def save_image_np(name, image_np, output_path="output/"):
p = np_to_pil(image_np)
p.save(output_path + "{}.png".format(name))
def save_image_tensor(image_tensor, output_path="output/"):
image_np = torch_to_np(image_tensor)
# print(image_np.shape)
p = np_to_pil(image_np)
return p
def video_to_images(file_name, name):
video = prepare_video(file_name)
for i, f in enumerate(video):
save_image(name + "_{0:03d}".format(i), f)
def images_to_video(images_dir, name, gray=True):
num = len(glob.glob(images_dir + "/*.jpg"))
c = []
for i in range(num):
if gray:
img = prepare_gray_image(images_dir + "/" + name + "_{}.jpg".format(i))
else:
img = prepare_image(images_dir + "/" + name + "_{}.jpg".format(i))
print(img.shape)
c.append(img)
save_video(name, np.array(c))
def save_heatmap(name, image_np):
cmap = plt.get_cmap('jet')
rgba_img = cmap(image_np)
rgb_img = np.delete(rgba_img, 3, 2)
save_image(name, rgb_img.transpose(2, 0, 1))
def save_graph(name, graph_list, output_path="output/"):
plt.clf()
plt.plot(graph_list)
plt.savefig(output_path + name + ".png")
def create_augmentations(np_image):
"""
convention: original, left, upside-down, right, rot1, rot2, rot3
:param np_image:
:return:
"""
aug = [np_image.copy(), np.rot90(np_image, 1, (1, 2)).copy(),
np.rot90(np_image, 2, (1, 2)).copy(), np.rot90(np_image, 3, (1, 2)).copy()]
flipped = np_image[:, ::-1, :].copy()
aug += [flipped.copy(), np.rot90(flipped, 1, (1, 2)).copy(), np.rot90(flipped, 2, (1, 2)).copy(),
np.rot90(flipped, 3, (1, 2)).copy()]
return aug
def create_video_augmentations(np_video):
"""
convention: original, left, upside-down, right, rot1, rot2, rot3
:param np_video:
:return:
"""
aug = [np_video.copy(), np.rot90(np_video, 1, (2, 3)).copy(),
np.rot90(np_video, 2, (2, 3)).copy(), np.rot90(np_video, 3, (2, 3)).copy()]
flipped = np_video[:, :, ::-1, :].copy()
aug += [flipped.copy(), np.rot90(flipped, 1, (2, 3)).copy(), np.rot90(flipped, 2, (2, 3)).copy(),
np.rot90(flipped, 3, (2, 3)).copy()]
return aug
def save_graphs(name, graph_dict, output_path="output/"):
"""
:param name:
:param dict graph_dict: a dict from the name of the list to the list itself.
:return:
"""
plt.clf()
fig, ax = plt.subplots()
for k, v in graph_dict.items():
ax.plot(v, label=k)
# ax.semilogy(v, label=k)
ax.set_xlabel('iterations')
# ax.set_ylabel(name)
ax.set_ylabel('MSE-loss')
# ax.set_ylabel('PSNR')
plt.legend()
plt.savefig(output_path + name + ".png")
def load(path):
"""Load PIL image."""
img = Image.open(path)
return img
def get_image(path, imsize=-1):
"""Load an image and resize to a cpecific size.
Args:
path: path to image
imsize: tuple or scalar with dimensions; -1 for `no resize`
"""
img = load(path)
if isinstance(imsize, int):
imsize = (imsize, imsize)
if imsize[0] != -1 and img.size != imsize:
if imsize[0] > img.size[0]:
img = img.resize(imsize, Image.BICUBIC)
else:
img = img.resize(imsize, Image.ANTIALIAS)
img_np = pil_to_np(img)
# 3*460*620
# print(np.shape(img_np))
return img, img_np
def prepare_gt(file_name):
"""
loads makes it divisible
:param file_name:
:return: the numpy representation of the image
"""
img = get_image(file_name, -1)
# print(img[0].size)
img_pil = img[0].crop([10, 10, img[0].size[0] - 10, img[0].size[1] - 10])
img_pil = crop_image(img_pil, d=32)
# img_pil = get_image(file_name, -1)[0]
# print(img_pil.size)
return pil_to_np(img_pil)
def prepare_image(file_name):
"""
loads makes it divisible
:param file_name:
:return: the numpy representation of the image
"""
img = get_image(file_name, -1)
# print(img[0].size)
# img_pil = img[0]
img_pil = crop_image(img[0], d=16)
# img_pil = get_image(file_name, -1)[0]
# print(img_pil.size)
return pil_to_np(img_pil)
# def prepare_video(file_name, folder="output/"):
# data = skvideo.io.vread(folder + file_name)
# return crop_torch_image(data.transpose(0, 3, 1, 2).astype(np.float32) / 255.)[:35]
#
#
# def save_video(name, video_np, output_path="output/"):
# outputdata = video_np * 255
# outputdata = outputdata.astype(np.uint8)
# skvideo.io.vwrite(output_path + "{}.mp4".format(name), outputdata.transpose(0, 2, 3, 1))
def prepare_gray_image(file_name):
img = prepare_image(file_name)
return np.array([np.mean(img, axis=0)])
def pil_to_np(img_PIL, with_transpose=True):
"""
Converts image in PIL format to np.array.
From W x H x C [0...255] to C x W x H [0..1]
"""
ar = np.array(img_PIL)
if len(ar.shape) == 3 and ar.shape[-1] == 4:
ar = ar[:, :, :3]
# this is alpha channel
if with_transpose:
if len(ar.shape) == 3:
ar = ar.transpose(2, 0, 1)
else:
ar = ar[None, ...]
return ar.astype(np.float32) / 255.
def median(img_np_list):
"""
assumes C x W x H [0..1]
:param img_np_list:
:return:
"""
assert len(img_np_list) > 0
l = len(img_np_list)
shape = img_np_list[0].shape
result = np.zeros(shape)
for c in range(shape[0]):
for w in range(shape[1]):
for h in range(shape[2]):
result[c, w, h] = sorted(i[c, w, h] for i in img_np_list)[l // 2]
return result
def average(img_np_list):
"""
assumes C x W x H [0..1]
:param img_np_list:
:return:
"""
assert len(img_np_list) > 0
l = len(img_np_list)
shape = img_np_list[0].shape
result = np.zeros(shape)
for i in img_np_list:
result += i
return result / l
def np_to_pil(img_np):
"""
Converts image in np.array format to PIL image.
From C x W x H [0..1] to W x H x C [0...255]
:param img_np:
:return:
"""
ar = np.clip(img_np * 255, 0, 255).astype(np.uint8)
if img_np.shape[0] == 1:
ar = ar[0]
else:
assert img_np.shape[0] == 3, img_np.shape
ar = ar.transpose(1, 2, 0)
return Image.fromarray(ar)
def np_to_torch(img_np):
"""
Converts image in numpy.array to torch.Tensor.
From C x W x H [0..1] to C x W x H [0..1]
:param img_np:
:return:
"""
return torch.from_numpy(img_np)[None, :]
def torch_to_np(img_var):
"""
Converts an image in torch.Tensor format to np.array.
From 1 x C x W x H [0..1] to C x W x H [0..1]
:param img_var:
:return:
"""
return img_var.detach().cpu().numpy()[0]
|