Singularity666 commited on
Commit
5a5bf83
·
verified ·
1 Parent(s): 64e883b

Create mgie_llava.py

Browse files
Files changed (1) hide show
  1. mgie_llava.py +401 -0
mgie_llava.py ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ from torch.nn import CrossEntropyLoss
7
+
8
+ from transformers import AutoConfig, AutoModelForCausalLM, \
9
+ LlamaConfig, LlamaModel, LlamaForCausalLM, \
10
+ CLIPVisionModel, CLIPImageProcessor
11
+
12
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
+
14
+ import os, diffusers
15
+
16
+ DEFAULT_IMAGE_TOKEN = "<image>"
17
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
18
+ DEFAULT_IM_START_TOKEN = "<im_start>"
19
+ DEFAULT_IM_END_TOKEN = "<im_end>"
20
+
21
+
22
+ class LlavaConfig(LlamaConfig):
23
+ model_type = "llava"
24
+
25
+
26
+ class LlavaLlamaModel(LlamaModel):
27
+ config_class = LlavaConfig
28
+
29
+ def __init__(self, config: LlamaConfig):
30
+ super(LlavaLlamaModel, self).__init__(config)
31
+
32
+ if hasattr(config, "mm_vision_tower"):
33
+ # HACK: for FSDP
34
+ self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)]
35
+ # self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)
36
+
37
+ if hasattr(config, "use_mm_proj"):
38
+ self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
39
+
40
+ def get_vision_tower(self):
41
+ vision_tower = getattr(self, 'vision_tower', None)
42
+ if type(vision_tower) is list:
43
+ vision_tower = vision_tower[0]
44
+ return vision_tower
45
+
46
+ def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
47
+ pretrain_mm_mlp_adapter=None, fsdp=None):
48
+ self.config.mm_vision_tower = vision_tower
49
+
50
+ image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
51
+
52
+ if not hasattr(self, 'vision_tower'):
53
+ vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
54
+ else:
55
+ vision_tower = self.vision_tower[0]
56
+ vision_tower.requires_grad_(False)
57
+
58
+ if fsdp is not None and len(fsdp) > 0:
59
+ self.vision_tower = [vision_tower]
60
+ else:
61
+ self.vision_tower = vision_tower
62
+
63
+ vision_config = vision_tower.config
64
+ num_patches = (vision_config.image_size // vision_config.patch_size) ** 2
65
+
66
+ self.config.use_mm_proj = True
67
+ self.config.mm_hidden_size = vision_config.hidden_size
68
+ self.config.mm_vision_select_layer = mm_vision_select_layer
69
+
70
+ if not hasattr(self, 'mm_projector'):
71
+ self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size)
72
+
73
+ if pretrain_mm_mlp_adapter is not None:
74
+ mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
75
+ self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
76
+
77
+ return dict(
78
+ image_processor=image_processor,
79
+ image_token_len=num_patches,
80
+ vision_config=vision_config
81
+ )
82
+
83
+ def forward(
84
+ self,
85
+ input_ids: torch.LongTensor = None,
86
+ attention_mask: Optional[torch.Tensor] = None,
87
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
88
+ inputs_embeds: Optional[torch.FloatTensor] = None,
89
+ use_cache: Optional[bool] = None,
90
+ output_attentions: Optional[bool] = None,
91
+ output_hidden_states: Optional[bool] = None,
92
+ images: Optional[torch.FloatTensor] = None,
93
+ return_dict: Optional[bool] = None,
94
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
95
+
96
+ # HACK: replace back original embeddings for LLaVA pretraining
97
+ orig_embeds_params = getattr(self, 'orig_embeds_params', None)
98
+ # if orig_embeds_params is not None:
99
+ # orig_embeds_params = orig_embeds_params[0]
100
+ # with torch.no_grad():
101
+ # self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data
102
+
103
+ if inputs_embeds is None:
104
+ inputs_embeds = self.embed_tokens(input_ids)
105
+
106
+ vision_tower = self.get_vision_tower()
107
+ if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
108
+ # TODO: this is a modified multimodal LLM -- Haotian Liu
109
+ with torch.no_grad():
110
+ if type(images) is list:
111
+ # variable length images
112
+ image_features = []
113
+ for image in images:
114
+ image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
115
+ select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
116
+ select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
117
+ image_feature = select_hidden_state[:, 1:]
118
+ image_features.append(image_feature)
119
+ else:
120
+ image_forward_outs = vision_tower(images.to(vision_tower.dtype), output_hidden_states=True)
121
+ select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
122
+ select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
123
+ image_features = select_hidden_state[:, 1:].to(images.dtype)
124
+ if type(images) is list:
125
+ image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
126
+ else:
127
+ image_features = self.mm_projector(image_features)
128
+ dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
129
+ dummy_image_features = self.mm_projector(dummy_image_features)
130
+
131
+ new_input_embeds = []
132
+ cur_image_idx = 0
133
+ for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
134
+ if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
135
+ # multimodal LLM, but the current sample is not multimodal
136
+ cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
137
+ new_input_embeds.append(cur_input_embeds)
138
+ cur_image_idx += 1
139
+ continue
140
+ if vision_tower.config.use_im_start_end:
141
+ cur_image_features = image_features[cur_image_idx]
142
+ num_patches = cur_image_features.shape[0]
143
+ if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
144
+ raise ValueError("The number of image start tokens and image end tokens should be the same.")
145
+ image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
146
+ for image_start_token_pos in image_start_tokens:
147
+ cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
148
+ num_patches = cur_image_features.shape[0]
149
+ if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
150
+ raise ValueError("The image end token should follow the image start token.")
151
+ if orig_embeds_params is not None:
152
+ cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
153
+ else:
154
+ cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
155
+ cur_image_idx += 1
156
+ new_input_embeds.append(cur_new_input_embeds)
157
+ else:
158
+ cur_image_features = image_features[cur_image_idx]
159
+ num_patches = cur_image_features.shape[0]
160
+ if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
161
+ raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
162
+ masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
163
+ mask_index_start = masked_indices[0]
164
+ if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
165
+ raise ValueError("The image patch tokens should be consecutive.")
166
+ if orig_embeds_params is not None:
167
+ cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
168
+ else:
169
+ cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
170
+ new_input_embeds.append(cur_new_input_embeds)
171
+ cur_image_idx += 1
172
+ inputs_embeds = torch.stack(new_input_embeds, dim=0)
173
+
174
+ return super(LlavaLlamaModel, self).forward(
175
+ input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
176
+ inputs_embeds=inputs_embeds, use_cache=use_cache,
177
+ output_attentions=output_attentions, output_hidden_states=output_hidden_states,
178
+ return_dict=return_dict
179
+ )
180
+
181
+ class EditMapper(nn.Module):
182
+ def __init__(self):
183
+ super().__init__()
184
+
185
+ self.llm2hid = nn.Linear(4096, 512)
186
+ self.query = nn.Parameter(torch.randn(1, 77, 512))
187
+ self.mapper = nn.Transformer(batch_first=True, norm_first=True,
188
+ d_model=512, nhead=4, num_encoder_layers=4, num_decoder_layers=4,
189
+ dim_feedforward=2048, dropout=0.0)
190
+ self.hid2feat = nn.Linear(512, 768)
191
+
192
+ def forward(self, llm, emb):
193
+ hid = self.llm2hid(llm+emb)
194
+ hid = self.mapper(hid, self.query.repeat(llm.shape[0], 1, 1))
195
+ feat = self.hid2feat(hid)
196
+
197
+ return feat
198
+
199
+ class LlavaLlamaForCausalLM(LlamaForCausalLM):
200
+ config_class = LlavaConfig
201
+
202
+ def __init__(self, config):
203
+ super(LlamaForCausalLM, self).__init__(config)
204
+ self.model = LlavaLlamaModel(config)
205
+
206
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
207
+
208
+ self.edit_head = EditMapper()
209
+
210
+ '''self.scheduler, self.vae, self.unet = [diffusers.DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='scheduler'),
211
+ diffusers.AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='vae'),
212
+ diffusers.UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='unet')]
213
+ self.vae.requires_grad_(False)
214
+ self.unet.register_to_config(in_channels=8)
215
+ with torch.no_grad():
216
+ conv = torch.nn.Conv2d(8, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
217
+ conv.weight.zero_()
218
+ conv.weight[:, :4, :, :].copy_(self.unet.conv_in.weight)
219
+ self.unet.conv_in = conv'''
220
+
221
+ # Initialize weights and apply final processing
222
+ self.post_init()
223
+
224
+ def get_model(self):
225
+ return self.model
226
+
227
+ def get_vision_tower(self):
228
+ return self.get_model().get_vision_tower()
229
+
230
+ def get_vision_tower(self):
231
+ model = self.get_model()
232
+ vision_tower = model.vision_tower
233
+ if type(vision_tower) is list:
234
+ vision_tower = vision_tower[0]
235
+ return vision_tower
236
+
237
+ def forward(
238
+ self,
239
+ input_ids: torch.LongTensor = None,
240
+ attention_mask: Optional[torch.Tensor] = None,
241
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
242
+ inputs_embeds: Optional[torch.FloatTensor] = None,
243
+ labels: Optional[torch.LongTensor] = None,
244
+ use_cache: Optional[bool] = None,
245
+ output_attentions: Optional[bool] = None,
246
+ output_hidden_states: Optional[bool] = None,
247
+ images: Optional[torch.FloatTensor] = None,
248
+ return_dict: Optional[bool] = None,
249
+ p2p_inp=None, p2p_ans=None
250
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
251
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
252
+ output_hidden_states = (
253
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
254
+ )
255
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
256
+
257
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
258
+ outputs = self.model(
259
+ input_ids=input_ids,
260
+ attention_mask=attention_mask,
261
+ past_key_values=past_key_values,
262
+ inputs_embeds=inputs_embeds,
263
+ use_cache=use_cache,
264
+ output_attentions=output_attentions,
265
+ output_hidden_states=output_hidden_states,
266
+ return_dict=return_dict,
267
+ images=images
268
+ )
269
+
270
+ hidden_states = outputs[0]
271
+ logits = self.lm_head(hidden_states)
272
+
273
+ loss = None
274
+ if labels is not None:
275
+ # Shift so that tokens < n predict n
276
+ shift_logits = logits[..., :-1, :].contiguous()
277
+ shift_labels = labels[..., 1:].contiguous()
278
+ # Flatten the tokens
279
+ loss_fct = CrossEntropyLoss()
280
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
281
+ shift_labels = shift_labels.view(-1)
282
+ # Enable model/pipeline parallelism
283
+ shift_labels = shift_labels.to(shift_logits.device)
284
+ loss = loss_fct(shift_logits, shift_labels)
285
+
286
+ if labels is not None:
287
+ llm = []
288
+ for i in range(labels.shape[0]):
289
+ try: p = labels[i].data.cpu().tolist().index(32003)-1
290
+ except: p = len(labels[i])-9
291
+ p = min(len(hidden_states[i])-9, p)
292
+ llm.append(hidden_states[i][p:p+8].unsqueeze(0))
293
+ llm = torch.cat(llm, dim=0)
294
+ hid_edit = self.edit_head(llm, self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
295
+
296
+ B, DROP = labels.shape[0], 0.05
297
+
298
+ hid_null = self.edit_head(torch.zeros(B, 8, 4096, device=labels.device),
299
+ self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
300
+
301
+ with torch.no_grad():
302
+ lat_ans, lat_inp = self.vae.encode(p2p_ans).latent_dist.sample()*self.vae.config.scaling_factor, self.vae.encode(p2p_inp).latent_dist.mode()
303
+ lat_ans, lat_inp = [torch.from_numpy(lat_ans.data.cpu().float().numpy()).to(lat_ans.device),
304
+ torch.from_numpy(lat_inp.data.cpu().float().numpy()).to(lat_inp.device)]
305
+
306
+ noise = torch.randn_like(lat_ans)
307
+ ts = torch.randint(0, self.scheduler.config.num_train_timesteps, (B, ), device=noise.device).long()
308
+ lat_noise = self.scheduler.add_noise(lat_ans, noise, ts)
309
+
310
+ prob = torch.rand(B, device=lat_ans.device)
311
+ mask = (prob<(DROP*2)).reshape(B, 1, 1)
312
+ hid_edit = torch.where(mask, hid_null, hid_edit)
313
+ mask = (1.0-((prob>=DROP).to(lat_inp.dtype)*(prob<(DROP*3)).to(lat_inp.dtype))).reshape(B, 1, 1, 1)
314
+ lat_inp *= mask
315
+
316
+ out = self.unet(torch.cat([lat_noise, lat_inp], dim=1), ts, hid_edit).sample
317
+
318
+ loss_ce, loss_edit = loss, nn.functional.mse_loss(out, noise, reduction='mean')
319
+ if int(os.environ['LOCAL_RANK'])==0: print('loss_ce:', loss_ce, '/', 'loss_edit:', loss_edit)
320
+ loss = loss_ce+loss_edit*0.5
321
+
322
+ if not return_dict:
323
+ output = (logits,) + outputs[1:]
324
+ return (loss,) + output if loss is not None else output
325
+
326
+ return CausalLMOutputWithPast(
327
+ loss=loss,
328
+ logits=logits,
329
+ past_key_values=outputs.past_key_values,
330
+ hidden_states=outputs.hidden_states,
331
+ attentions=outputs.attentions,
332
+ )
333
+
334
+ def prepare_inputs_for_generation(
335
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
336
+ ):
337
+ if past_key_values:
338
+ input_ids = input_ids[:, -1:]
339
+
340
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
341
+ if inputs_embeds is not None and past_key_values is None:
342
+ model_inputs = {"inputs_embeds": inputs_embeds}
343
+ else:
344
+ model_inputs = {"input_ids": input_ids}
345
+
346
+ model_inputs.update(
347
+ {
348
+ "past_key_values": past_key_values,
349
+ "use_cache": kwargs.get("use_cache"),
350
+ "attention_mask": attention_mask,
351
+ "images": kwargs.get("images", None),
352
+ }
353
+ )
354
+ return model_inputs
355
+
356
+ def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
357
+ tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
358
+ vision_config = self.get_vision_tower().config
359
+ vision_config.use_im_start_end = mm_use_im_start_end
360
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
361
+ self.resize_token_embeddings(len(tokenizer))
362
+
363
+ if mm_use_im_start_end:
364
+ num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
365
+ self.resize_token_embeddings(len(tokenizer))
366
+ vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
367
+
368
+ if num_new_tokens > 0:
369
+ input_embeddings = self.get_input_embeddings().weight.data
370
+ output_embeddings = self.get_output_embeddings().weight.data
371
+
372
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
373
+ dim=0, keepdim=True)
374
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
375
+ dim=0, keepdim=True)
376
+
377
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
378
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
379
+
380
+ if tune_mm_mlp_adapter:
381
+ self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
382
+ for p in self.get_input_embeddings().parameters():
383
+ p.requires_grad = True
384
+ for p in self.get_output_embeddings().parameters():
385
+ p.requires_grad = False
386
+
387
+ if pretrain_mm_mlp_adapter:
388
+ mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
389
+ embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
390
+ assert num_new_tokens == 2
391
+ if input_embeddings.shape == embed_tokens_weight.shape:
392
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
393
+ elif embed_tokens_weight.shape[0] == num_new_tokens:
394
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight
395
+ else:
396
+ raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
397
+
398
+ vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
399
+
400
+ AutoConfig.register("llava", LlavaConfig)
401
+ AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)